復(fù)數(shù)
ai
3-i
(a∈R)的實部是1,則它的虛部是
 
考點:復(fù)數(shù)代數(shù)形式的乘除運算,復(fù)數(shù)的基本概念
專題:數(shù)系的擴充和復(fù)數(shù)
分析:利用兩個復(fù)數(shù)代數(shù)形式的乘除法法則,虛數(shù)單位i的冪運算性質(zhì)化簡復(fù)數(shù),根據(jù)它的實部為1求出a的值,可得它的虛部.
解答: 解:∵復(fù)數(shù)
ai
3-i
=
ai(3+i)
(3+i)(3-i)
=
-a+3ai
10
實部是1,∴
-a
10
=1,a=-10,
則它的虛部是
3a
10
=-3,
故答案為:-3.
點評:本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)代數(shù)形式的乘除法法則的應(yīng)用,虛數(shù)單位i的冪運算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是正整數(shù),f(x)=(1+x)m+(1+x)n的展開式中x的系數(shù)為7,求f(x)展開式中x2的系數(shù)的最小值,并求這時f(0.003)的近似值(精確到0.01).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,以原點O為圓心的圓O是曲線|x|+|y|=
6
的內(nèi)切圓.
(1)求圓O的方程;
(2)若直線l與圓O相切于第一象限,且與x、y軸分別交于D,E兩點,當(dāng)DE長最小時,求直線l的方程;
(3)設(shè)M,P是圓O上任意兩點,點M關(guān)于x軸的對稱點為N,若直線MP、NP分別交于x軸于點A(m,0)和B(n,0),問這兩點的橫坐標(biāo)之積mn是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x、y滿足約束條件
x+y≤a
x+y≥8
x≥6
且不等式x+2y≤14恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α和β是空間中兩個不同的平面,下列敘述中,正確的是
 
.(填序號)
①因為M∈α,N∈α,所以MN∈α;
②因為M∈α,N∈β,所以α∩β=MN;
③因為AB?α,M∈AB,N∈AB,所以MN∈α;
④因為AB?α,AB?β,所以α∩β=AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值cos690°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x≥
1
x
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x∈R,使得x2+(1-a)x<0”是假命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,4]上任取一個實數(shù)x,則x>1的概率是
 

查看答案和解析>>

同步練習(xí)冊答案