【題目】如表提供了甲產(chǎn)品的產(chǎn)量x(噸)與利潤(rùn)y(萬(wàn)元)的幾組對(duì)照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5


(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 = x+ ;
(2)計(jì)算相關(guān)指數(shù)R2的值,并判斷線性模型擬合的效果.
參考公式: = = ,R2=1﹣

【答案】
(1)解:∵由題意知 = ×(3+4+5+6)=4.5, = ×(2.5+3+4+4.5)=0.7,

∴b= =0.7,

a=3.5﹣4.5×0.7=0.35,

∴線性回歸方程是y=0.7x+0.35


(2)解:相關(guān)指數(shù)R2=1﹣ ≈1﹣0.0013=0.9987,

∴解釋變量對(duì)預(yù)報(bào)變量的貢獻(xiàn)率為99.87%


【解析】(Ⅰ)首先做出x,y的平均數(shù),利用最小二乘法做出線性回歸直線的方程的系數(shù),寫出回歸直線的方程,得到結(jié)果;(Ⅱ)直接根據(jù)相關(guān)指數(shù)公式進(jìn)行求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線平面,直線平面,給出下列命題:

,則;   ,則;

,則;   ,則.

其中正確命題的序號(hào)是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,
且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1

(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;
(3)若M是PC的中點(diǎn),求三棱錐C﹣MAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若集合A={x|kx2﹣2x﹣1=0}只有一個(gè)元素,則實(shí)數(shù)k的取值集合為(
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義域?yàn)椋?,+∞)的單調(diào)函數(shù),若對(duì)任意的x∈(0,+∞),都有f[f(x)﹣ ]=2,則f(2016)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長(zhǎng)安,至齊,齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說法:

①弩馬第九日走了九十三里路;

②良馬前五日共走了一千零九十五里路;

③良馬和弩馬相遇時(shí),良馬走了二十一日.

則以上說法錯(cuò)誤的個(gè)數(shù)是( )個(gè)

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=log (﹣3+4x﹣x2)的單調(diào)遞增區(qū)間是(
A.(﹣∞,2)
B.(2,+∞)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)[x]表示不超過x的最大整數(shù),如[1]=1,[0.5]=0,已知函數(shù)f(x)= ﹣k(x>0),若方程f(x)=0有且僅有3個(gè)實(shí)根,則實(shí)數(shù)k的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)g(x)=mx2﹣2mx+n+1(m>0)在區(qū)間[0,3]上有最大值4,最小值0.
(1)求函數(shù)g(x)的解析式;
(2)設(shè)f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時(shí)恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案