【題目】已知兩個不共線的向量滿足, , .
(1)若與垂直,求的值;
(2)當(dāng)時,若存在兩個不同的使得成立,求正數(shù)的取值范圍.
【答案】(1) ;(2)
【解析】試題分析:(1)已知與垂直,所以以,變形得,由兩向量的坐標(biāo)可求得兩向量的模分別為, ,代入上式可得,求得.求向量的模,應(yīng)先求向量的平方。所以 ,故 . (2)由條件,得,整理得,即,用向量坐標(biāo)表示數(shù)量積得,用輔助角公式得. 由得,又要有兩解,結(jié)合正弦函數(shù)圖象可得, ,所以,即,解一元二次不等式,又因?yàn)?/span>,所以.
試題解析:解:(1)由條件知, ,又與垂直,
所以,所以.
所以 ,故 .
(2)由,得,
即,
即, ,
所以.
由得,又要有兩解,結(jié)合三角函數(shù)圖象可得,
,即,又因?yàn)?/span>,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點(diǎn),則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣ax﹣2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時,(x﹣k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市隨機(jī)抽取一年內(nèi)100 天的空氣質(zhì)量指數(shù)(AQI)的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 20 | 15 |
(1)若本次抽取的樣本數(shù)據(jù)有30 天是在供暖季,其中有8 天為嚴(yán)重污染.根據(jù)提
供的統(tǒng)計(jì)數(shù)據(jù),完成下面的2×2 列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該城市本年的
空氣嚴(yán)重污染與供暖有關(guān)”?
非重度污染 | 嚴(yán)重污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
(2)已知某企業(yè)每天的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x 的關(guān)系式為y= 試估計(jì)該企業(yè)一個月(按30 天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
參考公式:K2=
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .若曲線在點(diǎn)處的切線方程為(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在(0,+)上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式.
(1)當(dāng)時,解不等式;
(2)如果不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .若曲線在點(diǎn)處的切線方程為(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在(0,+)上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,PB⊥面ABCD,BA=BD= ,AD=2,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)若二面角P﹣AD﹣B為60°,求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的焦點(diǎn)在x軸上,長軸長為4,離心率為 . (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實(shí)數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com