6.已知函數(shù)f(x)=xlnx-k(x-1)
(1)求f(x)的單調(diào)區(qū)間;并證明lnx+$\frac{e}{x}$≥2(e為自然對數(shù)的底數(shù))恒成立;
(2)若函數(shù)f(x)的一個零點為x1(x1>1),f'(x)的一個零點為x0,是否存在實數(shù)k,使$\frac{x_1}{x_0}$=k,若存在,求出所有滿足條件的k的值;若不存在,說明理由.

分析 (1)求出函數(shù)的導數(shù),求出函數(shù)的單調(diào)區(qū)間,令k=2,則f(x)=xlnx-2(x-1),得到f(x)≥f(e),證出結(jié)論即可;
(2)假設存在k,使得$\frac{{x}_{1}}{{x}_{0}}$=k,(k>0)成立,得到m(k)=ek-1lnk-ek-1+1,求出函數(shù)的導數(shù),設F(k)=lnk+$\frac{1}{k}$-1,根據(jù)函數(shù)的單調(diào)性證出矛盾即可.

解答 解:(1)∵f′(x)=lnx+1-k,
x∈(0,ek-1)時,f′(x)<0,此時h(x)遞減,
x∈(ek-1,+∞)時,f′(x)>0,此時h(x)遞增,
令k=2,則f(x)=xlnx-2(x-1),
故x=e時,f(x)有最小值是f(e),
故f(x)=xlnx-2(x-1)≥f(e)=2-e,
即lnx+$\frac{e}{x}$≥2恒成立;
(2)由題意得:x1lnx1-k(x1-1)=0,
lnx0+1-k=0,
假設存在k,使得$\frac{{x}_{1}}{{x}_{0}}$=k,(k>0)成立,
消元得:ek-1lnk-ek-1+1=0,
設m(k)=ek-1lnk-ek-1+1,
則m′(k)=ek-1(lnk+$\frac{1}{k}$-1),
設F(k)=lnk+$\frac{1}{k}$-1,
則F′(x)=$\frac{1}{k}$-$\frac{1}{{k}^{2}}$,
k∈(0,1)時,F(xiàn)′(x)<0,即此時函數(shù)F(k)遞減,
k∈(1,+∞)時,F(xiàn)′(x)>0,此時函數(shù)F(k)遞增,
∴F(k)≥F(1)=0,
∴m′(k)>0,
故函數(shù)m(k)在(0,+∞)遞增,
∵m(1)=0,∴k=1,
但k=1時,x1=ek1k=1,與已知x1>1矛盾,
故k不存在.

點評 本題考查導數(shù)知識的運用,考查函數(shù)的構造,考查函數(shù)的最值,考查等價轉(zhuǎn)化問題的能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.命題“?x>0,都有x≥1”的否定為?x>0,使得x<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知曲線f(x)=2x2+1在點M(x0,y0)處的瞬時變化率為-4,則點M的坐標為(-1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn),當圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術,利用割圓術劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為( 。
參考數(shù)據(jù):$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在邊長為4的正方形ABCD內(nèi)部任取一點M,則滿足∠AMB為銳角的概率為( 。
A.$1-\frac{π}{8}$B.$\frac{π}{8}$C.$1-\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的上、下焦點分別為F1,F(xiàn)2,若在雙曲線C的下支上存在一點P使得|PF1|=4|PF2|,則雙曲線C的離心率的取值范圍為( 。
A.[$\frac{4}{3}$,+∞)B.(1,$\frac{4}{3}$]C.[$\frac{5}{3}$,+∞)D.(1,$\frac{5}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.a(chǎn)、b、c是三條直線,α、β是兩個平面,b?α,c?α.則下列命題不成立的是(  )
A.若α∥β,c⊥α,則c⊥βB.“若b⊥β,則α⊥β”的逆命題
C.若a是c在α的射影,a⊥b,則b⊥cD.“若b∥c,則c∥α”的逆否命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知x,y都是正數(shù),且lnx+lny=ln(x+y),則4x+y的最小值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.二次函數(shù)y=ax2+x+1(a>0)的圖象與x軸兩個交點的橫坐標分別為x1,x2
(1)證明:(1+x1)(1+x2)=1;
(2)證明:x1<-1,x2<-1;
(3)若x1,x2滿足不等式|lg$\frac{{x}_{1}}{{x}_{2}}$|≤1,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案