8.已知直線l經(jīng)過點(0,-2),其傾斜角的大小是60°,則直線l與兩坐標軸圍成三角形的面積S等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

分析 由已知中直線l的傾斜角可得其斜率,再由直線l經(jīng)過點(0,-2),可得直線的點斜式方程,可得直線在兩坐標軸上的截距,代入三角形面積公式可得答案.

解答 解:因為直線l的傾斜角的大小為60°,
故其斜率為$\sqrt{3}$,
又直線l經(jīng)過點(0,-2),所以其方程為y-(-2)=$\sqrt{3}$x,
即$\sqrt{3}$x-y-2=0,
由直線l的方程知它在x軸、y軸上的截距分別是$\frac{2}{\sqrt{3}}$、-2,
所以直線l與兩坐標軸圍成三角形的面積S=$\frac{1}{2}•\frac{2}{\sqrt{3}}•2$=$\frac{2\sqrt{3}}{3}$,
故選:D.

點評 本題考查直線的方程,其中根據(jù)直線l經(jīng)過點(0,-2),結合直線的斜率,求出直線方程是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.下列否定不正確的是(  )
A.“?x∈R,x2>0”的否定是“?x0∈R,x02≤0”
B.“?x0∈R,x02<0”的否定是“?x∈R,x2<0”
C.“?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1”
D.“?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設{an}是公比為q的等比數(shù)列,則“q>1”是“{an}為單調(diào)遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)f(x)=x3-$\frac{3}{2}$(a+1)x2+3ax+4,其中a∈R.
(1)若f(x)在x=2處取得極值,求常數(shù)a的值;
(2)若f(x)在(-∞,0)上為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知$\overrightarrow{a}$=(cosα,1,sinα),$\overrightarrow$=(sinα,1,cosα),則向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角是(  )
A.90°B.60°C.30°D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)若f(a)=3,求f(-a)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=(  )
A.(0,3]B.[-1,3]C.(3,+∞)D.(-1,0)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在梯形ABCD中AB∥CD,AD=CD=CB=2,∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=2.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=$\frac{1}{2x-1}$的定義域為{x|x≠$\frac{1}{2}$}.

查看答案和解析>>

同步練習冊答案