19.在正三棱柱ABC-A1B1C1中,點(diǎn)D是AB的中點(diǎn),證明:
(1)BC1∥平面CDA1
(2)平面ABB1A1⊥平面CDA1

分析 (1)連接AC1交A1C于點(diǎn)G,連接DG,在正三棱柱ABC-A1B1C1中,四邊形ACC1A1是平行四邊形,則AG=GC1,而AD=DB,則DG∥BC1,DG?平面A1DC,BC1?平面A1DC,根據(jù)線面平行的判定定理可知BC1∥平面A1DC;
(2)由正三棱柱的結(jié)構(gòu)特征可知平面ABB1A1⊥平面ABC,再由D為AB的中點(diǎn),得CD⊥AB,則CD⊥平面ABB1A1,由平面與平面垂直的判定得答案.

解答 證明:(1)連接AC1交A1C于點(diǎn)G,連接DG,
在正三棱柱ABC-A1B1C1中,四邊形ACC1A1是平行四邊形,
∴AG=GC1
∵AD=DB,
∴DG∥BC1
∵DG?平面A1DC,BC1?平面A1DC,
∴BC1∥平面A1DC;
(2)∵ABC-A1B1C1是正三棱柱,
∴平面ABB1A1⊥平面ABC,
∵D為AB的中點(diǎn),∴CD⊥AB,則CD⊥平面ABB1A1,
而CD?平面ABC,
∴平面ABB1A1⊥平面CDA1

點(diǎn)評(píng) 本題考查直線與平面平行的判定,考查了平面與平面垂直的判斷,考查學(xué)生的空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.命題p:x>4;命題q:4<x<10,則p是q成立的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{1}{3}$+$\frac{π}{12}$B.1+$\frac{π}{12}$C.$\frac{1}{3}$$+\frac{π}{4}$D.1$+\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C的方程為x2+$\frac{{y}^{2}}{4}$=1,定點(diǎn)N(0,1),過(guò)圓M:x2+y2=$\frac{4}{5}$上任意一點(diǎn)作圓M的一條切線交橢圓C于A、B兩點(diǎn).
(1)求證:$\overrightarrow{OA}•\overrightarrow{OB}$=0;
(2)求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.a(chǎn)、b為任意實(shí)數(shù),若(a,b)在曲線f(x,y)=0上,且(b,a)也在曲線f(x,y)=0上,則曲線f(x,y)=0的幾何特征是( 。
A.關(guān)于x軸對(duì)稱B.關(guān)于y軸對(duì)稱C.關(guān)于原點(diǎn)對(duì)稱D.關(guān)于直線y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在正方體ABCD-A1B1C1D1中,E、F分別是AB,BC的中點(diǎn),求異面直線BD1、EF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)點(diǎn)P是雙曲線${x^2}-\frac{y^2}{3}=1$上一點(diǎn),焦點(diǎn)F(2,0),點(diǎn)A(3,2),使4|PA|+2|PF|有最小值時(shí),則點(diǎn)P的坐標(biāo)是$(\frac{{\sqrt{21}}}{3},2)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.m的取值范圍為(-2$\sqrt{3}$,2$\sqrt{3}$)時(shí),方程x2-(m+13)x+m2+m=0的一根大于1,一根小于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若函數(shù)y=f(x)定義域是R.則
①函數(shù)y=f(x)與函數(shù)y=-f(x)的圖象關(guān)于x軸對(duì)稱;
②函數(shù)y=f(x-1)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱:
③函數(shù)y=f(x-1)與y=-f(1-x)的圖象關(guān)于($\frac{1}{2}$,0)對(duì)稱.
④函數(shù)y=f(2x+1)的圖象與y=f(3-2x)的圖象關(guān)于直線x=2對(duì)稱.

查看答案和解析>>

同步練習(xí)冊(cè)答案