分析 由f(x+2)-f(x)≤3•2x①,f(x+6)-f(x)≥63•2x②,②-①可推得f(x+6)-f(x+2)≥15•2x+2,可化為f(x+4)-f(x)≥15•2x③,由f(x+2)-f(x)≤3•2x,可得f(x+4)-f(x+2)≤3•2x+2,兩式相加可得f(x+4)-f(x)≤3•2x+3•2x+2=15•2x④,由③④可推得恒等式,由此可求得答案.
解答 解:由f(x+2)-f(x)≤3•2x①,f(x+6)-f(x)≥63•2x②,
②-①,得f(x+6)-f(x+2)≥60•2x=15•2x+2,即f(x+4)-f(x)≥15•2x③,
由f(x+2)-f(x)≤3•2x,得f(x+4)-f(x+2)≤3•2x+2,
兩式相加,得f(x+4)-f(x)≤3•2x+3•2x+2=15•2x④,
由①④,得f(x+4)-f(x)=15•2x,
∴f(2016)=f(2012)+15•22012
=f(2008)+15•22004+15•22008
=…
=f(0)+15•22012+15•22008+…+15•24+15•20
=2016+15•$\frac{1-{16}^{504}}{1-16}$=2015+22016,
故答案為:2015+22016
點評 本題考查抽象函數(shù),函數(shù)單調(diào)性的性質(zhì)及其應用,考查函數(shù)的求值,解決該題的關(guān)鍵是由不等式變出恒等式,體現(xiàn)轉(zhuǎn)化思想
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x2+2-x | B. | f(x)=x2-2-x | C. | f(x)=-x2+2-x | D. | f(x)=-x2-2-x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,5} | B. | {1,9} | C. | {5,9} | D. | {7,9} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com