已知向量,(n為正整數(shù)),函數(shù),設(shè)f(x)在(0,+∞上取最小值時(shí)的自變量x取值為an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn},對任意正整數(shù)n,都有bn·(-5)=1成立,設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,求Sn;
(3)在點(diǎn)列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在兩點(diǎn)Ai,Aj(i,j為正整數(shù))使直線AiAj的斜率為1?若存在,則求出所有的數(shù)對(i,j);若不存在,請你寫出理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
n+3 |
1 |
2 |
m |
n+3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(湖北理21)(本小題滿分14分)
已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知,求證,m=1,1,2…,n;
(Ⅲ)求出滿足等式3n+4m+…+(n+2)m=(n+3)n的所有正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知,求證,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+…+(n+2)n=(n+3)n的所有正整數(shù)n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com