分析 (Ⅰ)由余弦定理及已知條件得,又△ABC的面積等于9$\sqrt{3}$,得bc=36.聯(lián)立方程組即可解得b,c.
(Ⅱ)由題意化簡(jiǎn)可得:sinBcosC=2sinCcosC,分類討論cosC的值,解得b,c,利用面積公式即可得解.
解答 (本題共計(jì)8分)
解:(Ⅰ)由余弦定理及已知條件得,b2+c2-bc=36,…(1分)
又因?yàn)椤鰽BC的面積等于9$\sqrt{3}$,所以$\frac{1}{2}$bcsinA=9$\sqrt{3}$,得bc=36.…(2分)
聯(lián)立方程組$\left\{\begin{array}{l}{^{2}+{c}^{2}-bc=36}\\{bc=36}\end{array}\right.$,解得b=6,c=6.…(4分)
(Ⅱ)由題意得sin(B+C)+sin(B-C)=4sinCcosC,
即sinBcosC=2sinCcosC,…(5分)
當(dāng)cosC=0時(shí),C=$\frac{π}{2}$,B=$\frac{π}{6}$,b=2$\sqrt{3}$,c=4$\sqrt{3}$,…(6分)
當(dāng)cosC≠0時(shí),得sinB=2sinC,由正弦定理得b=2c,
聯(lián)立方程組$\left\{\begin{array}{l}{^{2}+{c}^{2}-bc=36}\\{b=2c}\end{array}\right.$,解得b=4$\sqrt{3}$,c=2$\sqrt{3}$.…(7分)
所以△ABC的面積S=$\frac{1}{2}$bcsinA=6$\sqrt{3}$.…(8分)
點(diǎn)評(píng) 本題主要考查了三角形面積公式,余弦定理,正弦定理的綜合應(yīng)用,考查了分類討論思想,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a≤1 | B. | a≤1 | C. | -1<a≤3 | D. | a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 16 | C. | ±32 | D. | ±64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰直角三角形 | B. | 底角不等于45°的等腰三角形 | ||
C. | 等腰三角形或直角三角形 | D. | 銳角不等于45°的直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=2n-1 | B. | an=2n+1 | C. | an=$\left\{{\begin{array}{l}{2(n=1)}\\{2n-1(n>1)}\end{array}}\right.$ | D. | an=$\left\{{\begin{array}{l}{2(n=1)}\\{2n+1(n>1)}\end{array}}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(1,+∞) | B. | (-1,0)∪(0,1) | C. | (1,+∞) | D. | (-1,0)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com