【題目】選修4-4:坐標系與參數(shù)方程
已知圓在極坐標方程為,直線的參數(shù)方程為(為參數(shù)).若直
線與圓相交于不同的兩點.
(Ⅰ)寫出圓的直角坐標方程,并求圓心的坐標與半徑;
(Ⅱ)若弦長,求直線的斜率.
【答案】(I);(II)或.
【解析】
試題分析:(I)化極坐標方程為直角坐標方程主要是利用公式,,來完成.代入可得,配方得,所以圓心為,半徑為;(II)在極坐標方程與參數(shù)方程的條件下求解直線與圓的位置關(guān)系問題,通常將極坐標方程與參數(shù)方程均化為直角坐標方程來解決. 由直線的參數(shù)方程知直線過定點,直線的方程為.利用弦長等于可求得斜率或.
試題解析:(I)由,得.
將,代入可得,
配方,得,所以圓心為,半徑為.
(II)由直線的參數(shù)方程知直線過定點,
則由題意,知直線的斜率一定存在,因此不妨設(shè)直線的方程為的方程為.
因為,所以,解得或.
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本25萬元,此外每生產(chǎn)1件這樣的產(chǎn)品,還需增加投入0.5萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為t件時,銷售所得的收入為萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當年產(chǎn)量x的函數(shù)為f(x),求f(x);
(2)當該公司的年產(chǎn)量為多少件時,當年所獲得的利潤最大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)證明:當時,函數(shù)沒有零點(提示:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某數(shù)學教師對所任教的兩個班級各抽取20名學生進行測試,分數(shù)分布如表:
分數(shù)區(qū)間 | 甲班頻率 | 乙班頻率 |
0.1 | 0.2 | |
0.2 | 0.2 | |
0.3 | 0.3 | |
0.2 | 0.2 | |
0.2 | 0.1 |
(Ⅰ)若成績120分以上(含120分)為優(yōu)秀,求從乙班參加測試的90分以上(含90分)的同學中,隨機任取2名同學,恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下面的×列聯(lián)表:
優(yōu)秀 | 不優(yōu)秀 | 總計 | |
甲班 | |||
乙班 | |||
總計 |
在犯錯概率小于0.1的前提下,你是否有足夠的把握認為學生的數(shù)學成績是否優(yōu)秀與班級有關(guān)系?
參考公式:,其中
≥ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在區(qū)間上的奇函數(shù),且,若時,有成立.
(1)證明:函數(shù)在區(qū)間上是增函數(shù);
(2)解不等式;
(3)若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知等邊中,分別為邊的中點,為的中點,為邊上一點,且,將沿折到的位置,使平面平面.
(I)求證:平面平面;
(II)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論正確的是( )
①函數(shù)關(guān)系是一種確定性關(guān)系;
②相關(guān)關(guān)系是一種非確定性關(guān)系;
③回歸分析是對具有函數(shù)關(guān)系的兩個變量進行統(tǒng)計分析的一種方法;
④回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種常用方法.
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以點為圓心的圓過原點.
(1)設(shè)直線與圓交于點,若,求圓的方程;
(2)在(1)的條件下,設(shè),且分別是直線和圓上的動點,求的最大值及此時點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com