精英家教網 > 高中數學 > 題目詳情

如圖,P是四邊形ABCD所在平面外的一點,四邊形ABCD是∠DAB=60°且邊長為的菱形,側面PAD為正三角形,其所在的平面垂直于底面ABCD.若G為AD的中點,

⑴求證:BG⊥平面PAD;

⑵求PB與面ABCD所成角.

 

 

 

【答案】

⑴連接BD,在菱形ABCD中,∠DAB=60°,故△ABD為正三角形,又G為AD的中點,所以,BG⊥AD.

△PAD為正三角形,G為AD的中點,所以,PG⊥AD  又平面PAD⊥平面ABCD,

平面PAD∩平面ABCD=AD,所以,PG⊥面ABD,故 PG⊥BG

所以,BG⊥平面PAD.

(2)易知△PBG為等腰直角三角形,可知PB與面ABCD所成角為45。

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,△ABC是一塊邊長AB=3m,AC=5m,BC=7m的剩余角料.現要從中裁剪出一塊面積最大的平行四邊形用料APQR,要求頂點P,Q,R分別在邊AB,BC,CA上.問點Q在BC邊上的什么位置時,剪裁符合要求?并求這個最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,ABCD是圓的內接四邊形,AB∥CD,過A點的圓的切線與CD的延長線交于P點,證明:
(1)∠PAD=∠CAB;
(2)AD2=AB•PD.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,ABCD是邊長為2的正方形紙片,沿某動直線l為折痕將正方形在其下方的部分向上翻折,使得每次翻折后點B都落在邊AD上,記為B';折痕與AB交于點E,以EB和EB’為鄰邊作平行四邊形EB’MB.若以B為原點,BC所在直線為x軸建立直角坐標系(如下圖):
(Ⅰ).求點M的軌跡方程;
(Ⅱ).若曲線S是由點M的軌跡及其關于邊AB對稱的曲線組成的,等腰梯形A1B1C1D1的三邊A1B1,B1C1,C1D1分別與曲線S切于點P,Q,R.求梯形A1B1C1D1面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•湖北模擬)如圖,直二面角E-AB-C中,四邊形ABEF是矩形,AB=2,AF=2
3
,△ABC是以A為直角頂點的等腰直角三角形,點P是線段BF上的一個動點.
(1)若PB=PF,求異面直線PC與AB所成的角的余弦值;
(2)若二面角P-AC-B的大小為300,求證:FB⊥平面PAC.

查看答案和解析>>

科目:高中數學 來源:學習周報 數學 人教課標高一版(A必修2) 2009-2010學年 第18期 總174期 人教課標高一版 題型:047

如圖,P是平面四邊形ABCD所在平面外一點,且AB=BC,AD=DC,PA=PC.

求證:平面PAC⊥平面PBD.

查看答案和解析>>

同步練習冊答案