分析 (Ⅰ)由題意,f(x)是定義域R上的奇函數(shù),f(0)=0,求出a的值;
(Ⅱ)a=1時,化簡f(x),利用基本初等函數(shù)的性質(zhì)求出函數(shù)f(x)的值域;
(Ⅲ)判斷函數(shù)f(x)在其定義域R上是單調(diào)增函數(shù),用單調(diào)性的定義進行證明即可.
解答 解:(Ⅰ)∵函數(shù)f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$(x∈R),且f(-x)=-f(x),
∴f(x)是定義域R上的奇函數(shù),
∴f(0)=0,
即$\frac{a{•2}^{0}+a-2}{{2}^{0}+1}$=0,
解得a=1;
(Ⅱ)當a=1時,f(x)=$\frac{{2}^{x}+1-2}{{2}^{x}+1}$=1-$\frac{2}{{2}^{x}+1}$,
∵2x>0,
∴2x+1>1,
∴1>$\frac{1}{{2}^{x}+1}$>0,
∴-2<-$\frac{2}{{2}^{x}+1}$<0,
∴-1<1-$\frac{2}{{2}^{x}+1}$<1,
∴函數(shù)f(x)的值域(-1,1);
(Ⅲ)函數(shù)f(x)在其定義域R上是單調(diào)增函數(shù),
證明如下:任取x1、x2∈R,且x1<x2,
∴f(x1)-f(x2)=(1-$\frac{2}{{2}^{{x}_{1}}+1}$)-(1-$\frac{2}{{2}^{{x}_{2}}+1}$)
=$\frac{2{(2}^{{x}_{1}}{-2}^{{x}_{2}})}{{(2}^{{x}_{1}}+1){(2}^{{x}_{2}}+1)}$,
∵x1<x2,∴${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,
∴2(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)<0,(${2}^{{x}_{1}}$+1)(${2}^{{x}_{2}}$+1)>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴函數(shù)f(x)在其定義域R上是單調(diào)增函數(shù).
點評 本題考查了函數(shù)的奇偶性與單調(diào)性的應用問題,也考查了求函數(shù)的值域的應用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,2) | B. | (1,3) | C. | (0,2] | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{n}{n+1}$ | B. | $\frac{1}{4(n+1)}$ | C. | $\frac{n}{4(n+1)}$ | D. | $\frac{n-1}{4n}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com