分析 由題意可知$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=$\frac{3}{2}$,從而寫出Sn=n+$\frac{n(n-1)}{2}$•$\frac{3}{2}$=$\frac{3{n}^{2}+n}{4}$,從而解得.
解答 解:∵an=2an-1+3•2n-1,
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+$\frac{3}{2}$,
∴$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=$\frac{3}{2}$,
又∵$\frac{{a}_{1}}{2}$=1,
∴數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是以1為首項,$\frac{3}{2}$為公差的等差數(shù)列,
∴Sn=n+$\frac{n(n-1)}{2}$•$\frac{3}{2}$=$\frac{3{n}^{2}+n}{4}$,
故$\frac{3{n}^{2}+n}{4}$<20,且n∈N*,
故n=1,2,3,4;
故答案為:{1,2,3,4}.
點評 本題考查了數(shù)列的化簡與運算及等差數(shù)列的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${P}_{6}^{6}$ | B. | ${P}_{4}^{4}$•${P}_{3}^{3}$ | ||
C. | ${P}_{6}^{6}$-${P}_{4}^{4}$•${P}_{3}^{3}$ | D. | ${P}_{6}^{6}$-${P}_{3}^{3}•$${P}_{3}^{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com