【題目】已知函數(shù)

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),討論的單調(diào)性.

【答案】1;(2)詳見(jiàn)解析.

【解析】試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)求曲線的切線方程、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、計(jì)算能力.第一問(wèn),先將代入得到表達(dá)式,對(duì)求導(dǎo),將切點(diǎn)的橫坐標(biāo)2代入中得到切線的斜率k,再將切點(diǎn)的橫坐標(biāo)2代入到中,得到切點(diǎn)的縱坐標(biāo),最后利用點(diǎn)斜式寫(xiě)出切線方程;第二問(wèn),討論的單調(diào)性即討論的正負(fù),即討論導(dǎo)數(shù)表達(dá)式分子的正負(fù),所以構(gòu)造函數(shù),通過(guò)分析題意,將分成、、、多種情況,分類(lèi)討論,判斷的正負(fù),從而得到的單調(diào)性.

試題解析:(1)當(dāng)時(shí),

6

2)因?yàn)?/span>

所以,

8

i)當(dāng)a=0時(shí),

所以當(dāng)時(shí)g(x)>0, 此時(shí)函數(shù)單調(diào)遞減,

x1,)時(shí),g(x)<0, 此時(shí)函數(shù)f,(x)單調(diào)遞增。

ii)當(dāng)時(shí),由,解得: 10

,函數(shù)f(x)上單調(diào)遞減, 11

,在單調(diào)遞減,在上單調(diào)遞增.

當(dāng)a<0時(shí),由于1/a-1<0,

x(0,1)時(shí),g(x)>0,此時(shí),函數(shù)f(x)單調(diào)遞減;

x1,)時(shí),g(x)<0 , ,此時(shí)函數(shù)單調(diào)遞增。

綜上所述:

當(dāng)a≤ 0 時(shí),函數(shù)f(x)在(0,1)上單調(diào)遞減;

函數(shù)f(x)(1, +∞) 上單調(diào)遞增

當(dāng)時(shí),函數(shù)f(x)(0, + ∞)上單調(diào)遞減

當(dāng)時(shí),函數(shù)f(x)上單調(diào)遞減;

函數(shù) f(x)上單調(diào)遞增; 14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )

(參考數(shù)據(jù):

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,為正三角形,點(diǎn)在棱上,且,點(diǎn),分別為棱的中點(diǎn).

(1)證明:平面;

(2)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.

(1)求的值;

(2)若對(duì)于任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.

(1)求的值;

(2)若對(duì)于任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸,選擇相同的單位長(zhǎng)度建立極坐標(biāo)系,圓極坐標(biāo)方程為.

(Ⅰ)當(dāng)時(shí),求直線的普通方程和圓的直角坐標(biāo)方程;

(Ⅱ)直線與圓的交點(diǎn)為、,證明:是與無(wú)關(guān)的定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)經(jīng)過(guò)橢圓的右焦點(diǎn)的直線與橢圓交于、兩點(diǎn),、分別為橢圓的左、右頂點(diǎn),記的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程,并說(shuō)明其表示什么軌跡;

(2)若直線的極坐標(biāo)方程為,試判斷直線與曲線的位置關(guān)系,若相交,請(qǐng)求出其弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左焦點(diǎn)為,上頂點(diǎn)為,長(zhǎng)軸長(zhǎng)為,為直線上的動(dòng)點(diǎn),,.當(dāng)時(shí),重合.

(1)若橢圓的方程;

(2)若直線交橢圓,兩點(diǎn),若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案