(滿分12分)已知函數(shù)(x∈R).
(1)若有最大值2,求實(shí)數(shù)a的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.


(1)-1
(2)函數(shù)的單調(diào)遞增區(qū)間(k∈Z)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,且
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)解不等式;
(Ⅲ)若上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù),其圖象過(guò)點(diǎn)(,).
(1)求的值及最小正周期;
(2)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
設(shè)二次函數(shù)滿足下列條件:
①當(dāng)時(shí),其最小值為0,且成立;
②當(dāng)時(shí),恒成立.
(1)求的值;
(2)求的解析式;
(3)求最大的實(shí)數(shù),使得存在,只要當(dāng)時(shí),就有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分15分)
若函數(shù)f(x)=ax3+bx2+cx+d是奇函數(shù),且f(x)極小值=f(-)=-.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-1,m](m>-1)上的最大值;
(3)設(shè)函數(shù)g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)求函數(shù)的定義域:
(1)  
(2)      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


(本題10分)已知函數(shù)
(1)判斷函數(shù)的奇偶性
(2)若,判斷函數(shù)上的單調(diào)性并用定義證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分) 已知函數(shù)   ,x ∈[ 3 , 5 ] ,
(1)用定義證明函數(shù)的單調(diào)性;
(2)求函數(shù)的最大值和最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案