拋物線y2=12x的焦點坐標(biāo)是
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:確定拋物線的焦點位置,進而可確定拋物線的焦點坐標(biāo).
解答: 解:拋物線y2=12x的焦點在x軸上,且p=6,
p
2
=3,
∴拋物線y2=12x的焦點坐標(biāo)為(3,0).
故答案為:(3,0).
點評:本題考查拋物線的性質(zhì),解題的關(guān)鍵是定型定位,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系x-O-y中,極點與直角坐標(biāo)系原點重合,極軸與x軸非負(fù)半軸重合建立極坐標(biāo)系,若曲線
x=sinθ 
y=sin2θ 
(θ為參數(shù))與曲線ρsinθ=a有兩個公共點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ-ρ=0,直線l:
x=2+tcosα
y=3+tsinα
(t為參數(shù))過曲線C的焦點,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個正方體內(nèi)接于球,若球的體積為
3
,則正方體的棱長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點D在圓O直徑AB的延長線上,過D作圓O的切線,切點為C.若CD=
3
,BD=1,則圓O的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有5個小球(3白2黑),現(xiàn)從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知x,y∈(0,+∞),若
x
+3
y
<k
x+y
恒成立,利用柯西不等式可求得實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f′(x0)=2,下面說法不正確的是( 。
A、
lim
△x→0
f(x0+3△x)-f(x0)
△x
=6
B、
lim
h→0
f(x0-2h)-f(x0)
h
=-4
C、
lim
x→0
f(x0+2x)-f(x0)
sinx
=2
D、
lim
x→0
f(x0+x2)-f(x0)
1-cosx
=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x0是方程lnx+x-5=0的根,則x0在下列哪個區(qū)間內(nèi)(  )
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

同步練習(xí)冊答案