設(shè)等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿(mǎn)足3a3是8a1與a5的等差中項(xiàng);數(shù)列{an}滿(mǎn)足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試確定實(shí)數(shù)t的值,使得數(shù)列{bn}為等差數(shù)列.
分析:(1)由題意,6a3=8a1+a5,則6q2=8+q4,解得q2=4或q2=2,因?yàn)閝為正整數(shù),所以q=2,故可得通項(xiàng);
(2)分別令n=1,2,3,可得得b1=2t-4,b2=16-4t,b3=12-2t,由b1+b3=2b2,可得得t=3,代入原式可得2n2-(3+bn)n+
3
2
bn=0
,得bn=2n,由等差數(shù)列的定義可判.
解答:解:(1)由題意,6a3=8a1+a5,則6q2=8+q4,解得q2=4或q2=2,
因?yàn)閝為正整數(shù),所以q=2,又a1=2,所以an=2n
(2)當(dāng)n=1時(shí),2-(t+b1+
3
2
b1=0,得b1=2t-4,
同理可得:n=2時(shí),b2=16-4t,n=3時(shí),b3=12-2t,
則由b1+b3=2b2,得t=3,
并且,當(dāng)t=3時(shí),2n2-(3+bn)n+
3
2
bn=0
,
得bn=2n,由bn+1-bn=2,知此時(shí)數(shù)列{bn}為等差數(shù)列.
故答案為:t=3.
點(diǎn)評(píng):本題為等差、等比數(shù)列的綜合應(yīng)用,正確運(yùn)用公式是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若8a2+a5=0,則下列式子中數(shù)值不能確定的是( 。
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,巳知S10=∫03(1+2x)dx,S20=18,則S30=
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S6:S3=3,則S9:S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S6
=( 。
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n 項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S3
=
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案