【題目】某次考試后,對全班同學的數(shù)學成績進行整理,得到表:

分數(shù)段

人數(shù)

5

15

20

10

將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________

【答案】115

【解析】

由表格中數(shù)據(jù)可知各分數(shù)段的學生數(shù)學成績的頻率,即直方圖中每個矩形的面積,而中位數(shù)左側(cè)的所有小矩形的面積之和應為0.5,進而求解即可.

由題意可知,直方圖每個矩形的面積表示對應的頻率,直方圖四個矩形的面積從左向右依次為0.1,0.3,0.4,0.2,由于中位數(shù)左側(cè)的矩形面積之和為0.5,故中位數(shù)位于第3個矩形處,而前2個矩形面積之和為0.4,故第3個矩形在中位數(shù)左側(cè)的面積為0.1,

故中位數(shù)為區(qū)間的最靠左的四等分點處,故中位數(shù)為115.

故答案為:115.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=4cosxsinx+a的最大值為2.

1)求實數(shù)a的值;

2)在給定的直角坐標系上作出函數(shù)fx)在[0π]上的圖象:

3)求函數(shù)fx)在[,]上的零點,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明家的晚報在下午任何一個時間隨機地被送到,他們一家人在下午任何一個時間隨機地開始晚餐.為了計算晚報在晚餐開始之前被送到的概率,某小組借助隨機數(shù)表的模擬方法來計算概率,他們的具體做法是將每個1分鐘的時間段看作個體進行編號,編號為01,編號為02,依此類推,編號為90.在隨機數(shù)表中每次選取一個四位數(shù),前兩位表示晚報時間,后兩位表示晚餐時間,如果讀取的四位數(shù)表示的晚報晚餐時間有一個不符合實際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個四位數(shù)6548中的65不符合晚報時間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計晚報在晚餐開始之前被送到的概率為(

6548 1176 7417 4685 0950 5804 7769 7473 0395 7186

8012 4356 3517 7270 8015 4531 8223 7421 1157 8263

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐SABCD中,底面ABCD是邊長為4的菱形,∠BAD60°,SASD2,點E是棱AD的中點,點F在棱SC上,且λ,SA//平面BEF

1)求實數(shù)λ的值;

2)求三棱錐FEBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年東京夏季奧運會將設(shè)置米男女混合泳接力這一新的比賽項目,比賽的規(guī)則是:每個參賽國家派出22女共計4名運動員比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿米且由一名運動員完成, 每個運動員都要出場. 現(xiàn)在中國隊確定了備戰(zhàn)該項目的4名運動員名單,其中女運動員甲只能承擔仰泳或者自由泳,男運動員乙只能承擔蝶泳或自由泳,剩下的男女各一名運動員則四種泳姿都可以上,那么中國隊共有( )種兵布陣的方式.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若存在兩個極值點,,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了增強高考與高中學習的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學、外語3個科目成績和高中學業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學、生物、信息技術(shù)七科目中自主選擇三科.

(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;

(2)甲、乙、丙三名同學都選擇了物理、化學、歷史組合,各學科成績達到二級的概率都是0.8,且三人約定如果達到二級不參加第二次考試,達不到二級參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案