8.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則z=2x+4y的最大值為(  )
A.5B.-38C.10D.38

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+4y得y=-$\frac{1}{2}$x+$\frac{z}{4}$,
平移直線y=-$\frac{1}{2}$x+$\frac{z}{4}$,由圖象可知當(dāng)直線y=-$\frac{1}{2}$x+$\frac{z}{4}$經(jīng)過(guò)點(diǎn)A時(shí),
直線y=-$\frac{1}{2}$x+$\frac{z}{4}$的截距最大,此時(shí)z最大,
由$\left\{\begin{array}{l}{x=3}\\{x-y+5=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=8}\end{array}\right.$,
即A(3,8),
此時(shí)z=2×3+4×8=6+32=38,
故選:D

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.不等式$\frac{3-x}{2x-4}$<1的解集為{x|x<2或x>$\frac{7}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=$\frac{x-1}{lg(x+1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,+∞)B.(-1,1)∪(1,+∞)C.(-1,0)∪(0,+∞)D.(-1,0)∪(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖中甲、乙、丙所示,下面是三個(gè)幾何體的三視圖,相應(yīng)的標(biāo)號(hào)是(  )
①長(zhǎng)方體 ②圓錐 ③三棱錐 ④圓柱.
A.②①③B.①②③C.③②④D.④③②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{{x}^{2}-4x,x<0}\end{array}\right.$,若f(2a+1)>f(3),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2)∪(1,+∞)B.(-∞,-1)∪(-$\frac{1}{3}$,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓的一個(gè)頂點(diǎn)為A1(0,-$\sqrt{2}$),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2$\sqrt{2}$=0的距離3
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)M(1,1)的直線與橢圓交于A、B兩點(diǎn),且M點(diǎn)為線段AB的中點(diǎn),求直線AB的方程及|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.不等式x2-2x-3<0的解集為( 。
A.{x|-1<x<3}B.C.RD.{x|-3<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.向量$\overrightarrow{a}$在基底{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$}下可以表示為$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,若a在基底{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$}下可表示為$\overrightarrow{a}$=λ($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)+μ($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),則λ=$\frac{5}{2}$,μ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,點(diǎn)A(3,0),點(diǎn)P在橢圓C上.求|PA|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案