某工廠欲加工一件藝術品,需要用到三棱錐形狀的坯材,工人將如圖所示的長方體ABCD-EFGH材料切割成三棱錐H-ACF.

(Ⅰ)若點M,N,K分別是棱HA,HC,HF的中點,點G是NK上的任意一點,求證:MG∥平面ACF;
(Ⅱ)已知原長方體材料中,AB=2m,AD=3m,DH=1m,根據(jù)藝術品加工需要,工程師必須求出該三棱錐的高.
(i) 甲工程師先求出AH所在直線與平面ACF所成的角θ,再根據(jù)公式h=AH•sinθ求出三棱錐H-ACF的高.請你根據(jù)甲工程師的思路,求該三棱錐的高.
(ii)乙工程師設計了一個求三棱錐的高度的程序,其框圖如圖所示,則運行該程序時乙工程師應輸入的t的值是多少?(請直接寫出t的值,不要求寫出演算或推證的過程).

(Ⅰ)證法一:∵HM=MA,HN=NC,HK=KF,
∴MK∥AF,MN∥AC.∵MK?平面ACF,AF?平面ACF,
∴MK∥平面ACF,
同理可證MN∥平面ACF,…(3分)
∵MN,MK?平面MNK,且MK∩MN=M,
∴平面MNK∥平面ACF,…(4分)
又MG?平面MNK,故MG∥平面ACF.…(5分)
證法二:連HG并延長交FC于T,連接AT.
∵HN=NC,HK=KF,
∴KN∥FC,則HG=GT,
又∵HM=MA,∴MG∥AT,…(2分)∵MG?平面ACF,AT?平面ACF,
∴MG∥平面ACF.…(5分)
(Ⅱ)解:(i)如圖,分別以DA,DC,DH所在直線為x軸,y軸,z軸建立空間直角坐標系O-xyz.則有A(3,0,0),C(0,2,0),F(xiàn)(3,2,1),H(0,0,1).…(6分)
設平面ACF的一個法向量,
則有,解得,
令y=3,則,…(8分)
,…(9分)
∴三棱錐H-ACF的高為.…(10分)
(ii)t=2.…(13分)
分析:(Ⅰ)證法一:利用線面平行的判定證明MK∥平面ACF,MN∥平面ACF,從而可得平面MNK∥平面ACF,利用面面平行的性質(zhì)可得MG∥平面ACF;證法二:利用線面平行的判定證明MG∥平面ACF;
(Ⅱ)(i)建立空間直角坐標系,求出平面ACF的一個法向量,求出AH所在直線與平面ACF所成的角θ,再根據(jù)公式h=AH•sinθ求出三棱錐H-ACF的高
(ii)t=2.
點評:本小題主要考查直線與直線、直線與平面、平面與平面的位置關系和算法初步等基礎知識,考查空間想象能力、推理論證能力及運算求解能力,考查化歸與轉化思想、數(shù)形結合思想、函數(shù)與方程思想及應用意識.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)某工廠欲加工一件藝術品,需要用到三棱錐形狀的坯材,工人將如圖所示的長方體ABCD-EFGH材料切割成三棱錐H-ACF.

(Ⅰ)若點M,N,K分別是棱HA,HC,HF的中點,點G是NK上的任意一點,求證:MG∥平面ACF;
(Ⅱ)已知原長方體材料中,AB=2m,AD=3m,DH=1m,根據(jù)藝術品加工需要,工程師必須求出該三棱錐的高.
(i) 甲工程師先求出AH所在直線與平面ACF所成的角θ,再根據(jù)公式h=AH•sinθ求出三棱錐H-ACF的高.請你根據(jù)甲工程師的思路,求該三棱錐的高.
(ii)乙工程師設計了一個求三棱錐的高度的程序,其框圖如圖所示,則運行該程序時乙工程師應輸入的t的值是多少?(請直接寫出t的值,不要求寫出演算或推證的過程).

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省泉州市高三第二次質(zhì)量檢測數(shù)學試卷(理科)(解析版) 題型:解答題

某工廠欲加工一件藝術品,需要用到三棱錐形狀的坯材,工人將如圖所示的長方體ABCD-EFGH材料切割成三棱錐H-ACF.

(Ⅰ)若點M,N,K分別是棱HA,HC,HF的中點,點G是NK上的任意一點,求證:MG∥平面ACF;
(Ⅱ)已知原長方體材料中,AB=2m,AD=3m,DH=1m,根據(jù)藝術品加工需要,工程師必須求出該三棱錐的高.
(i) 甲工程師先求出AH所在直線與平面ACF所成的角θ,再根據(jù)公式h=AH•sinθ求出三棱錐H-ACF的高.請你根據(jù)甲工程師的思路,求該三棱錐的高.
(ii)乙工程師設計了一個求三棱錐的高度的程序,其框圖如圖所示,則運行該程序時乙工程師應輸入的t的值是多少?(請直接寫出t的值,不要求寫出演算或推證的過程).

查看答案和解析>>

同步練習冊答案