【題目】在新的勞動(dòng)合同法出臺(tái)后,某公司實(shí)行了年薪制工資結(jié)構(gòu)改革.該公司從2008年起,每人的工資由三個(gè)項(xiàng)目構(gòu)成,并按下表規(guī)定實(shí)施:

項(xiàng)目

金額[/(人年)]

性質(zhì)與計(jì)算方法

基礎(chǔ)工資

2007年基礎(chǔ)工資為20000

考慮到物價(jià)因素,決定從2008

起每年遞增10%(與工齡無(wú)關(guān))

房屋補(bǔ)貼

800

按職工到公司年限計(jì)算,每年遞增800

醫(yī)療費(fèi)

3200

固定不變

如果該公司今年有5位職工,計(jì)劃從明年起每年新招5名職工.

1)若今年算第一年,將第n年該公司付給職工工資總額y(萬(wàn)元)表示成年限n的函數(shù);

2)若公司每年發(fā)給職工工資總額中,房屋補(bǔ)貼和醫(yī)療費(fèi)的總和總不會(huì)超過(guò)基礎(chǔ)工資總額的p%,求p的最小值.

【答案】12

【解析】

1)設(shè)第n年共有個(gè)職工,求出基礎(chǔ)工資總額、醫(yī)療總額、房屋補(bǔ)貼,求和即可求解.

2)根據(jù)題意可得,令,求出的最大項(xiàng),使大于等于的最大項(xiàng)即可求解.

1)設(shè)第n年共有個(gè)職工,那么基礎(chǔ)工資總額為:萬(wàn)元

醫(yī)療總額為:萬(wàn)元,

房屋補(bǔ)貼為:

萬(wàn)元,

.

2)由,

,

,得,

所以,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,側(cè)棱底面,,,,,,(

1)求證:平面;

2)若直線與平面所成角的正弦值為,求的值;

3)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問(wèn)共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式.(直接寫出答案,不必說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形與正三角形的邊長(zhǎng)均為2,它們所在平面互相垂直,平面,平面

(1)求證:平面平面;

(2)若,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:,經(jīng)過(guò)點(diǎn),傾斜角為的直線l與曲線C交于A,B兩點(diǎn)

I)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;

)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , . 

1)求證:平面 平面;

2)設(shè)上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司決定投人資金進(jìn)行產(chǎn)品研發(fā)以提高產(chǎn)品售價(jià).已知每件產(chǎn)品的制造成本為元,若投人的總的研發(fā)成本(萬(wàn)元)與每件產(chǎn)品的銷售單價(jià)()的關(guān)系如下表:

1)求關(guān)于的線性回歸方程;

2)市場(chǎng)部發(fā)現(xiàn),銷售單價(jià)()與銷量()存在以下關(guān)系:,.根據(jù)(1)中結(jié)果預(yù)測(cè),當(dāng)為何值時(shí),可獲得最高的利潤(rùn)?

:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的最小值;

2)設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a1=1,前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,b1>1,公比為2,且b2S3=54,b3+S2=16.

(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列{cn}滿足cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競(jìng)賽.經(jīng)過(guò)初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得10分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中3人答對(duì)的概率分別為,,,且各人回答正確與否相互之間沒(méi)有影響,用表示乙隊(duì)的總得分.

(Ⅰ)求的分布列及數(shù)學(xué)期望;

(Ⅱ)求甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案