9.函數(shù)y=x3-3x2-9x+5的極值情況是( 。
A.在x=-1處取得極大值,但沒有最小值
B.在x=3處取得極小值,但沒有最大值
C.在x=-1處取得極大值,在x=3處取得極小值
D.既無極大值也無極小值

分析 求出y′,令y′=0,求出極值點,由此能求出函數(shù)y=x3-3x2-9x+5既有極大值又有極小值.

解答 解:∵y=x3-3x2-9x+5,
∴y′=3x2-6x-9,由y′=0,得x=-1或x=3,
x∈(-∞,-1)時,y′>0;x∈(-1,3)時,y′<0;x∈(3,+∞)時,y′>0,
∴函數(shù)y=x3-3x2-9x+5的增區(qū)間是(-∞,-1),(3,+∞);減區(qū)間是(-1,3),
∴函數(shù)y=x3-3x2-9x+5既有極大值又有極小值,在x=-1處取得極大值,在x=3處取得極小值.
故選:C.

點評 本題考查函數(shù)的單調區(qū)間的求法,考查實數(shù)的極值的求法,解題時要認真審題,注意導數(shù)性質和分類討論思想的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.若{1,a,$\frac{a}$}={0,a2,a+b},則a2015+b2015的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設集合M={(x,y)|F(x,y)=0}為平面直角坐標系xoy內的點集,若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,則稱點集M滿足性質P.
給出下列四個點集:
①R={(x,y)|sinx-y+1=0}
②S={(x,y)|lnx-y=0}
③T={(x,y)|x2+y2-1=0}
④W={(x,y)|xy-1=0}
其中所有滿足性質 P 的點集的序號是③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在平面直角坐標系xOy中,已知向量$\overrightarrow a$=(2,0),$\overrightarrow b$=(0,1).設向量$\overrightarrow x=\overrightarrow a+({1+cosθ})\overrightarrow b$,$\overrightarrow y=-k\overrightarrow a+{sin^2}$$θ•\overrightarrow b$,其中0<θ<$\frac{π}{2}$.
(1)若$\overrightarrow x$∥$\overrightarrow y$,且θ=$\frac{π}{3}$,求實數(shù)k的值;
(2)若$\overrightarrow x$⊥$\overrightarrow y$,求實數(shù)k的最大值,并求取最大值時cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列命題錯誤的是(  )
A.命題“若x2<1,則-1<x<1”的逆否命題是“若x≥1或x≤-1,則x2≥1”
B.“am2<bm2”是“a<b”的充分不必要條件
C.命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D.命題p:存在x0∈R,使得${{x}_{0}}^{2}$+x0+1<0,則¬p:任意x∈R,都有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知圓x2+y2-2x+4y+1=0,則原點O在( 。
A.圓內B.圓外C.圓上D.無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如果執(zhí)行下面的程序框圖,輸入n=6,m=4,求輸出的p=?(要求必要的書寫,不能只有數(shù)字。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=a2x-1-2(a>0且a≠1),無論a取何值,函數(shù)圖象恒過一個定點,則定點坐標為$(\frac{1}{2},-1)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知拋物線y=4ax2(a≠0)的準線方程為y=$\frac{1}{16}$,則a的值是-1.

查看答案和解析>>

同步練習冊答案