精英家教網 > 高中數學 > 題目詳情
拋物線的頂點在原點,它的準線過雙
x2
a2
-
y2
b2
=1(a>0,b>0)曲線的一個焦點,并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點為(
3
2
6
),求拋物線的方程和雙曲線的方程.
考點:拋物線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:首先根據拋物線的準線過雙曲線的焦點,可得p=2c,再利用拋物線與雙曲線同過交點(
3
2
,
6
),求出c、p的值,進而結合雙曲線的性質a2+b2=c2,求解即可
解答: 解:由題設知,拋物線以雙曲線的右焦點為焦點,準線過雙曲線的左焦點,∴p=2c.
設拋物線方程為y2=4c•x,
∵拋物線過點(
3
2
,
6
),∴6=4c•
3
2

∴c=1,故拋物線方程為y2=4x.
又雙曲線
x2
a2
-
y2
b2
=1過點(
3
2
,
6
),
9
4a2
-
6
b2
=1

又a2+b2=c2=1,∴
9
4a2
-
6
1-a2
=1.
∴a2=
1
4
或a2=9(舍).
∴b2=
3
4
,
故雙曲線方程為:4x2-
y2
3
4
=1.
點評:本題考查了拋物線和雙曲線方程的求法:待定系數法,熟練掌握圓錐曲線的性質是解題的關鍵,同時考查了學生的基本運算能力與運算技巧.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知命題p:存在x∈R,9x-3x-a≤0,若命題¬p是假命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

某校買實驗設備,與廠家協(xié)商,按出廠價結算,若超過50套還可以每套比出廠價低30元給予優(yōu)惠,若按出廠價應付a元,但多買11套就可以按優(yōu)惠價結算,恰好也付a元(價格為整數),則a=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在所有兩位數(10~99)中任取一個數,這個數能被3或5整除的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,直四棱柱ABCD-A1B1C11中,AB∥CD,AD⊥AB,AB=2,AD=
2
,AA1=3,E為CD上一點,DE=1,EC=3.
(1)證明:BE⊥平面BB1C1C;
(2)求點B1到平面EA1C1的距離;
(3)此問僅理科學生做(文科學生不做)求:二面角B 11C1-E的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F,點E(
a2
c
,0)(c為橢圓的半焦距)在x軸上,若橢圓的離心率e=
2
2
,且|EF|=1.
(1)求橢圓方程;
(2)若過F的直線交橢圓與A,B兩點,且
OA
+
OB
與向量
m
=(4,-
2
)共線(其中O為坐標原點),求證:
OA
OB
=0.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的增函數,且f(log2x)>f(1),則x的取值范圍為( 。
A、(2,+∞)
B、(0,
1
2
)∪(0,+∞)
C、(
1
2
,2)
D、(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

圓錐曲線中不同曲線的性質都是有一定聯(lián)系的,比如圓可以看成特殊的橢圓,所以很多圓的性質結論可以類比到橢圓,例如;如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)可以被認為由圓x2+y2=a2作縱向壓縮變換或由圓x2+y2=b2作橫向拉伸變換得到的.依據上述論述我們可以推出橢圓C的面積公式為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

定義運算a⊕b=a2-ab-b2,則sin
π
8
⊕cos
π
8
=
 

查看答案和解析>>

同步練習冊答案