在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 
x=acosφ
y=bsinφ
(a>b>0,?為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過極點的圓.已知曲線C1上的點M(1,
3
2
)對應(yīng)的參數(shù)φ=
π
3
,曲線C2過點D(1,
π
3
).
(I)求曲線C1,C2的直角坐標(biāo)方程;
(II)若點A( ρ 1,θ ),B( ρ 2,θ+
π
2
) 在曲線C1上,求
1
ρ21
+
1
ρ22
的值.
(I)將M(1,
3
2
)
及對應(yīng)的參數(shù)?=
π
3
,代入
x=acos?
y=bsin?
,得
1=acos
π
3
3
2
=bsin
π
3
,即
a=2
b=1
,
所以曲線C1的方程為
x2
4
+y2=1

設(shè)圓C2的半徑為R,由題意圓C2的方程為(x-R)2+y2=R2
由D的極坐標(biāo) (1,
π
3
)
,得D(
1
2
3
2
)
,代入(x-R)2+y2=R2,解得R=1,
所以曲線C2的方程為(x-1)2+y2 =1.
(II)因為點A(ρ1,θ),B(ρ2,θ+
π
2
)
在曲線C1上,又點A的直角坐標(biāo)為(ρ1cosθ,ρ1sinθ),
點B的橫坐標(biāo)為ρ2 cos(θ+
π
2
)=-ρ2sinθ,點B的縱坐標(biāo)為ρ2sin(θ+
π
2
)=ρ2cosθ,
所以
ρ21
cos2θ
4
+
ρ21
sin2θ=1
ρ22
sin2θ
4
+
ρ22
cos2θ=1
,
所以
1
ρ21
+
1
ρ22
=(
cos2θ
4
+sin2θ)+(
sin2θ
4
+cos2θ)=
5
4
.(10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標(biāo)是
3
5
,點B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案