【題目】執(zhí)行如圖所示的程序框圖,如果運(yùn)行結(jié)果為720,那么判斷框中應(yīng)填入( )
A.k<6?
B.k<7?
C.k>6?
D.k>7?
【答案】C
【解析】解:由題意可知,輸出結(jié)果為S=720, 通過(guò)第1次循環(huán)得到S=1×2=2,k=3;
通過(guò)第2次循環(huán)得到S=1×2×3=6,k=4;
通過(guò)第3次循環(huán)得到S=1×2×3×4=24,k=5;
通過(guò)第4次循環(huán)得到S=1×2×3×4×5=120,k=6;
通過(guò)第6次循環(huán)得到S=1×2×3×4×5×6=720,k=7;
此時(shí)執(zhí)行輸出S=720,結(jié)束循環(huán),
所以判斷框中的條件為k>6?.
故選:C.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識(shí)點(diǎn),需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,摩天輪的半徑為,點(diǎn)距地面的高度為,摩天輪按逆時(shí)針?lè)较蜃鲃蛩龠\(yùn)動(dòng),且每轉(zhuǎn)一圈,摩天輪上點(diǎn)的起始位置在最高點(diǎn).
(1)試確定點(diǎn)距離地面的高度(單位:)關(guān)于旋轉(zhuǎn)時(shí)間(單位:)的函數(shù)關(guān)系式;
(2)在摩天輪轉(zhuǎn)動(dòng)一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)距離地面超過(guò)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件。已知設(shè)備甲每天的租賃費(fèi)為200元,設(shè)備乙每天的租賃費(fèi)為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費(fèi)最少為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2分別是長(zhǎng)軸長(zhǎng)為 的橢圓C: 的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣ .
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)F1且不與坐標(biāo)軸垂直的直線C(2,2,0)交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與B(2,0,0)軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是 ,求線段AB長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l: ( 為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線P(x0 , y0)上點(diǎn)P的極坐標(biāo)為 ,Q為曲線C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足,,是數(shù)列的前項(xiàng)的和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,,成等差數(shù)列,,18,成等比數(shù)列,求正整數(shù)的值;
(3)是否存在,使得為數(shù)列中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查乘客的候車情況,公交公司在某為臺(tái)的名候車乘客中隨機(jī)抽取人,將他們的候車時(shí)間(單位:分鐘)作為樣本分成組,如下表所示:
組別 | 候車時(shí)間 | 人數(shù) |
一 | ||
二 | ||
三 | ||
四 | ||
五 |
(1)求這名乘客的平均候車時(shí)間;
(2)估計(jì)這名候車乘客中候車時(shí)間少于分鐘的人數(shù);
(3)若從上表第三、四組的人中隨機(jī)抽取人作進(jìn)一步的問(wèn)卷調(diào)查,求抽到的兩人恰好來(lái)自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過(guò)A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P.
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角中,已知,,若點(diǎn)是線段上一點(diǎn)(不含端點(diǎn)),過(guò)作于,于.
(1)若外接圓的直徑長(zhǎng)為,求的值;
(2)求的最小值
(3)問(wèn)點(diǎn)在何處時(shí),的面積最大?最大值為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com