已知等差數(shù)列{an},Sn為其前n項(xiàng)和,若S20=100,且a1+a2+a3=4,則a18+a19+a20=(  )
A、20B、24C、26D、30
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列的性質(zhì)以及前n項(xiàng)和公式,建立方程關(guān)系即可求出結(jié)論.
解答: 解:在等差數(shù)列中,
∵a1+a2+a3=3a2=4,
∴a2=
4
3
,
∵S20=100,
∴S20=
20(a1+a19)
2
=10(a1+a19)=10(a2+a19)
=100,
∴a2+a19=10,
∴a19=10-a2=10-
4
3
=
26
3
,
∴a18+a19+a20═3a19.=
26
3
=26
,
故選:C.
點(diǎn)評:本題主要考查等差數(shù)列的通項(xiàng)公式以及前n項(xiàng)和的應(yīng)用,要求熟練掌握等差數(shù)列的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)(-1,2)且在兩坐標(biāo)上的截距相等,則l的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

單調(diào)遞增數(shù)列{an}滿足a1+a2+a3+…+an=
1
2
(an2+n).
(1)求a1,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=
an+1,n為奇數(shù)
an-1×2an-1+1,n為偶數(shù)
,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=x2-2x+2與y=-x2+ax+b(a>0,b>0)在它們的一個(gè)交點(diǎn)處切線互相垂直,則
1
a
+
4
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖,則該幾何體的表面積為( 。
A、3+3
2
B、8+3
2
C、6+6
2
D、8+6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(1)當(dāng)x∈[-
π
2
,π]
時(shí),若函數(shù)y=f(sinx)存在零點(diǎn),求實(shí)數(shù)a的取值范圍并討論零點(diǎn)個(gè)數(shù);
(2)當(dāng)a=0時(shí),若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)點(diǎn)A,B的坐標(biāo)分別為(-3,0),(3,0).直線AM,BM相交于點(diǎn)M,且它們的斜率之積是-
4
5
,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校舉行知識競賽,第一輪選拔共設(shè)有1,2,3三個(gè)問題,每位參賽者按問題1,2,3的順序作答,競賽規(guī)則如下:
①每位參賽者計(jì)分器的初始分均為10分,答對問題1,2,3分別加1分,2分,3分,答錯任一題減2分;
②每回答一題,積分器顯示累計(jì)分?jǐn)?shù),當(dāng)累計(jì)分?jǐn)?shù)小于8分時(shí),答題結(jié)束,淘汰出局;當(dāng)累計(jì)分?jǐn)?shù)大于或等于12分時(shí),答題結(jié)束,進(jìn)入下一輪;當(dāng)答完三題,累計(jì)分?jǐn)?shù)仍不足12分時(shí),答題結(jié)束,淘汰出局.
已知甲同學(xué)回答1,2,3三個(gè)問題正確的概率依次為
3
4
,
1
2
1
3
,且各題回答正確與否相互之間沒有影響.
(1)求甲同學(xué)能進(jìn)入下一輪的概率;
(2)用X表示甲同學(xué)本輪答題結(jié)束時(shí)累計(jì)分?jǐn)?shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線:y=x+b與曲線:x=
1-y2
有二個(gè)不同的公共點(diǎn),則b的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案