18.兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若$\frac{a_3}{b_7}=\frac{2}{3}$,則$\frac{S_5}{{{T_{13}}}}$=$\frac{10}{39}$.

分析 直接由等差數(shù)列的前n項(xiàng)和結(jié)合等差數(shù)列的性質(zhì)得到$\frac{S_5}{{{T_{13}}}}$=$\frac{5{a}_{3}}{13_{7}}$.

解答 解:∵S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=5a3,T13=$\frac{13(_{1}+_{13})}{2}$=13b7,$\frac{a_3}{b_7}=\frac{2}{3}$,
∴$\frac{S_5}{{{T_{13}}}}$=$\frac{5{a}_{3}}{13_{7}}$=$\frac{5}{13}$×$\frac{2}{3}$=$\frac{10}{39}$.
故答案是:$\frac{10}{39}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),考查了等差數(shù)列的前n項(xiàng)和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(x)是R上的減函數(shù),則a+b<0是f(a)+f(b)>f(-a)+f(-b)的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=sinωx-cosωx(ω>0),x∈R,若函數(shù)f(x)在(-ω,ω)上是增函數(shù),且圖象關(guān)于直線x=-ω對(duì)稱,則ω=( 。
A.2B.πC.$\frac{\sqrt{π}}{2}$D.$\frac{\sqrt{3π}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)y=logax在x∈[2,+∞)上恒有|y|>1,則a的范圍是(  )
A.$\frac{1}{2}$<a<2且a≠1B.0<a<$\frac{1}{2}$或1<a<2C.1<a<2D.a>2或0<a<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)y=ax-b+1的圖象恒過(guò)定點(diǎn)(1,2),則b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$,其中$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(A)=2.
①求A;
②若b=1,△ABC的面積為$\frac{\sqrt{3}}{2}$,求$\frac{b+c}{sinB+sinC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如果輸入n=2,那么執(zhí)行圖中算法后的輸出結(jié)果是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=2sin(4x+$\frac{π}{4}$)的圖象( 。
A.關(guān)于原點(diǎn)對(duì)稱B.關(guān)于點(diǎn)(-$\frac{π}{16}$,0)對(duì)稱
C.關(guān)于y軸對(duì)稱D.關(guān)于直線x=$-\frac{π}{16}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知a=2,則按如圖的程序運(yùn)行后輸出的結(jié)果是4

查看答案和解析>>

同步練習(xí)冊(cè)答案