11.已知函數(shù)$f(x)=Asin({ωx+φ})({A>0\;,\;\;ω>0\;,\;\;|φ|<\frac{π}{2}})$在一個周期內(nèi)的圖象如圖所示,圖象過點$({0\;,\;\;\sqrt{3}})$,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為高為$2\sqrt{3}$的正三角形.
(1)求A,ω,φ的值;
(2)當(dāng)$x∈[{-\frac{2}{3}\;,\;\;\frac{4}{3}}]$時,求函數(shù)f(x)的值域;
(3)將y=f(x)的圖象所在點向左平行移動θ(θ>0)的單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)的圖象的一個對稱中心為$({\frac{2}{3}\;,\;\;0})$,求θ的最小值.

分析 (1)根據(jù)三角函數(shù)的圖象,結(jié)合三角函數(shù)的性質(zhì)即可求A,ω和φ的值,
(2)根據(jù)三角函數(shù)的解析式,求出角的范圍即可求出函數(shù)的值域,
(3)利用三角函數(shù)的圖象平移關(guān)系求出g(x)的解析式,結(jié)合函數(shù)的對稱性進行求解即可.

解答 解:(1)∵△ABC為高為$2\sqrt{3}$的正三角形,
∴A=2$\sqrt{3}$,
則sin60°=$\frac{2\sqrt{3}}{AB}$=$\frac{\sqrt{3}}{2}$,則AB=BC=4,
即函數(shù)的周期T=2BC=8=$\frac{2π}{ω}$,
則ω=$\frac{π}{4}$,
此時f(x)=2$\sqrt{3}$sin($\frac{π}{4}$x+φ),
∵圖象過點$({0\;,\;\;\sqrt{3}})$,
∴f(0)=2$\sqrt{3}$sinφ=$\sqrt{3}$,
則sinφ=$\frac{1}{2}$,
∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
即A=2$\sqrt{3}$,ω=$\frac{π}{4}$,φ=$\frac{π}{6}$;
(2)由(1)得f(x)=2$\sqrt{3}$sin($\frac{π}{4}$x+$\frac{π}{6}$),
當(dāng)$x∈[{-\frac{2}{3}\;,\;\;\frac{4}{3}}]$時,
即-$\frac{2}{3}$≤x≤$\frac{4}{3}$,
則0≤$\frac{π}{4}$x+$\frac{π}{6}$≤$\frac{π}{2}$,
∴當(dāng)$\frac{π}{4}$x+$\frac{π}{6}$=$\frac{π}{2}$時,函數(shù)取得最大值為2$\sqrt{3}$,
當(dāng)$\frac{π}{4}$x+$\frac{π}{6}$=0時,函數(shù)取得最小值為0,
即函數(shù)f(x)的值域為[0,2$\sqrt{3}$];
(3)將y=f(x)的圖象所在點向左平行移動θ(θ>0)的單位長度,得到y(tǒng)=g(x)的圖象.
即g(x)=2$\sqrt{3}$sin[$\frac{π}{4}$(x+θ)+$\frac{π}{6}$]=2$\sqrt{3}$sin($\frac{π}{4}$x+$\frac{π}{4}$θ+$\frac{π}{6}$),
若y=g(x)的圖象的一個對稱中心為$({\frac{2}{3}\;,\;\;0})$,
即$\frac{π}{4}$×$\frac{2}{3}$+$\frac{π}{4}$θ+$\frac{π}{6}$=kπ,k∈Z
則θ=4k-$\frac{4}{3}$,k∈Z.
∵θ>0,∴當(dāng)k=1時,θ取得最小值此時θ的最小值為4-$\frac{4}{3}$=$\frac{8}{3}$.

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),利用圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.綜合性較強,運算量較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C所對的邊分別為a,b,c.函數(shù)f(x)=sin(2x+A).
(1)若$A=\frac{π}{2}$,則$f(-\frac{π}{6})$的值為$\frac{1}{2}$;
(2)若$f(\frac{π}{12})=1$,a=3,$cosB=\frac{4}{5}$,求△ABC的邊b的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知冪函數(shù)f(x)=xα是偶函數(shù),在[0,+∞)上遞增的,且滿足$f({\frac{1}{2}})>\frac{1}{2}$.請寫出一個滿足條件的α的值,α=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.本學(xué)期王老師任教兩個平行班高三A班、高三B班,兩個班都是50個學(xué)生,如圖圖反映的是兩個班在本學(xué)期5次數(shù)學(xué)測試中的班級平均分對比,根據(jù)圖表,不正確的結(jié)論是( 。
A.A班的數(shù)學(xué)成績平均水平好于B班
B.B班的數(shù)學(xué)成績沒有A班穩(wěn)定
C.下次考試B班的數(shù)學(xué)平均分要高于A班
D.在第1次考試中,A、B兩個班的總平均分為98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如下圖表:

(Ⅰ)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?
(Ⅱ)估算該市80歲及以上長者占全市戶籍人口的百分比;
(Ⅲ)政府計劃為80歲及以上長者或生活不能自理的老人每人購買1000元/年的醫(yī)療保險,為其余老人每人購買600元/年的醫(yī)療保險,不可重復(fù)享受,試估計政府執(zhí)行此計劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知奇函數(shù)$f(x)=a-\frac{1}{{{2^x}+1}}\;,\;\;x∈({-1\;,\;\;1})$.
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)f(x)滿足f(x-1)+f(x)<0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.用秦九韶算法求多項式f(x)=x6-5x5+6x4-3x3+1.8x2+0.35x+2,在x=-1的值時,v2的值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-e{x^2}+mx+1({m∈R})$,$g(x)=\frac{lnx}{x}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意的兩個正實數(shù)x1,x2,若g(x1)<f'(x2)恒成立(f'(x)表示f(x)的導(dǎo)數(shù)),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若復(fù)數(shù)z滿足z•i=1+i(i是虛數(shù)單位),則z的共軛復(fù)數(shù)是1+i.

查看答案和解析>>

同步練習(xí)冊答案