6.在1和16之間插入三個(gè)正數(shù)a,b,c,使1,a,b,c,16成等比數(shù)列,那么b等于( 。
A.2B.4C.8D.$\frac{17}{2}$

分析 根據(jù)題意,1,a,b,c,16成等比數(shù)列,則b是1與16的等比中項(xiàng),可得b2=1×16=16,解可得b的值.

解答 解:根據(jù)題意,1,a,b,c,16成等比數(shù)列,
則b是1與16的等比中項(xiàng),則b2=1×16=16,
又由b為正數(shù),
則b=4;
故選B.

點(diǎn)評(píng) 本題考查等比數(shù)列的性質(zhì),涉及等比中項(xiàng)的運(yùn)用,注意題干中“三個(gè)正數(shù)a,b,c”這一條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知cos(40°-α)=$\frac{3}{5}$.且90°<α<180°,求cos(50°+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)的最小正周期為8,且等式f(x+8)=f(-x)對(duì)一切實(shí)數(shù)x成立,則f(x)為偶(填“奇”或“偶”)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).
求:(1)sinα-cosα;
(2)tanα+$\frac{1}{tanα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.定義在R上的函數(shù)y=f(x)的值域?yàn)閇0,1],則y=f(x+1)的值域?yàn)椋ā 。?table class="qanwser">A.[0,1]B.[1,2]C.[-1,0]D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算:
(1)1og520-1og54;
(2)1og3(27×92);
(3)1g1002-1og${\;}_{\frac{1}{3}}$$\frac{1}{81}$
(4)lg0.0001+1ne-1og8.31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.若cos(65°+α)=$\frac{1}{4}$,其中α為第三象限角,求cos(115°-α)+sin(α-115°)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知角α的終邊經(jīng)過(guò)點(diǎn)P(sin15°,-cos15°),則sin2α的值為( 。
A.$\frac{1}{2}$+$\frac{\sqrt{3}}{4}$B.$\frac{1}{2}$-$\frac{\sqrt{3}}{4}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某皮鞋廠從今年1月份開(kāi)始投產(chǎn),并且前4個(gè)月的產(chǎn)量分別為如表所示
月份1234
產(chǎn)量(萬(wàn)雙)1.021.101.161.18
由于產(chǎn)品質(zhì)量好,款式新穎,前幾個(gè)月的產(chǎn)品銷售情況良好,為了推銷員在推銷產(chǎn)品時(shí),按受訂單不至于過(guò)多或過(guò)少,需要估測(cè)以后幾個(gè)月的產(chǎn)量,廠里分析,產(chǎn)量的增加是由于工人生產(chǎn)熟練和理順了生產(chǎn)流程,廠里也暫時(shí)不準(zhǔn)備增加設(shè)備和工人.如果用x表示月份,用y表示產(chǎn)量,試比較y=a$\sqrt{x}$+b和y=abx+c哪一個(gè)更好些?(函數(shù)模型y=a$\sqrt{x}$+b,要求用第1、4月份的數(shù)據(jù)確定a、b,函數(shù)模型y=abx+c要求用第1、2、3月份的數(shù)據(jù)確定a、b、c,精確到0.01,$\sqrt{2}≈1.414$,$\sqrt{3}≈1.732$)

查看答案和解析>>

同步練習(xí)冊(cè)答案