2.若三點A(2,2),B(a,0),C(0,b)共線(a>0,b>0),則a+2b的最小值為( 。
A.12B.8$\sqrt{2}$C.6-4$\sqrt{2}$D.6+4$\sqrt{2}$

分析 利用向量共線定理與基本不等式的性質即可得出.

解答 解:$\overrightarrow{AB}$=(a-2,-2),$\overrightarrow{AC}$=(-2,b-2),
∵A,B,C三點共線,
∴4=(a-2)(b-2),
化為$\frac{2}{a}$+$\frac{2}$=1a>0,b>0.
∴a+2b=(a+2b)($\frac{2}{a}$+$\frac{2}$)=6+$\frac{2a}$+$\frac{4b}{a}$≥6+2$\sqrt{\frac{2a}•\frac{4b}{a}}$=6+4$\sqrt{2}$,當且僅當a=$\sqrt{2}$b時取等號.
∴a+2b的最小值是6+4$\sqrt{2}$,
故選:D.

點評 本題考查了坐標運算與向量共線定理、基本不等式的性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.橢圓4x2+y2=1的離心率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)求與雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{12}$=1有共同的漸近線,且經過點A($\sqrt{3}$,2$\sqrt{5}$)的雙曲線的標準方程;
(2)求以坐標軸為對稱軸,原點為頂點,過(3,2)的拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.汽車租賃業(yè)被稱為“朝陽產業(yè)”,因為它具有無須辦理保險、無須年檢維修、車型可隨意更換等優(yōu)點,以租車代替買車來控制陳本,正慢慢受到國內企事業(yè)單位和個人用戶的青睞,可以滿足人民群眾個性化出行、商務活動需求和保障重大社會活動.2013年國慶長假期間某汽車租賃公司為了調查P、Q兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛,分別統(tǒng)計了每輛車某個星期內的出租天數(shù),統(tǒng)計數(shù)據(jù)如表:
P型車
出租天數(shù)1234567
車輛數(shù)51030351532
Q型車
出租天數(shù)1234567
車輛數(shù)1420201615105
(1)根據(jù)一周內的統(tǒng)計數(shù)據(jù),預測該公司一輛P型車,一輛Q型車一周內合計出租天數(shù)恰好為4天的概率;
(2)如果兩種車型每輛車每天出租獲得的利潤相同,該公司需要從P、Q兩種車型中購買一輛,請你給出建議應該購買哪一種車型,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.定義在R上的函數(shù)f(x)滿足:f'(x)-f(x)>1,且f(0)=3,則不等式f(x)>4ex-1(其中e為自然對數(shù)的底數(shù))的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某班5名同學去參加3項不同活動,同一項活動至少1人參加,則5人參加活動的方案共有( 。┓N.
A.120B.130C.140D.150

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求函數(shù)y=cos2x-2sinx的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={x|x<a},B={x|1<x<2},且A∪B=A,則實數(shù)a的取值范圍是(  )
A.a≤1B.a<1C.a≥2D.a>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)滿足f(x-1)=x+1,則f(2016)=( 。
A.2019B.2018C.2017D.2015

查看答案和解析>>

同步練習冊答案