【題目】在幾何體中,底面為菱形,,相交于點,四邊形為直角梯形,,面.

(1)證明:面

(2)求二面角的余弦值.

【答案】(1)詳見解析;(2).

【解析】

1)由底面為菱形,可得,結合面面垂直的性質可得平面,從而得到,又,得到平面,利用勾股定理證得,由線面垂直的判定定理證得平面,利用面面垂直的判定定理證得平面平面;

2)取EF中點G,由題意可知,,則平面,分別以OA,OB,OG所在直線為軸建立空間直角坐標系,分別求出平面AFC與平面AEC的一個法向量,由兩法向量所成角的余弦值可得二面角的余弦值.

(1)因為底面為菱形,所以,

又平面底面,平面平面,

因此平面,從而.

,所以平面,

,

可知,

從而,故,

,所以平面.

平面,所以平面平面.

(2)取中點,由題可知,所以平面,

又在菱形中,,

分別以的方向為軸正方向建立空間直角坐標系(如圖示),

.

所以,

.

由(1)可知平面,所以平面的法向量可取為

設平面的法向量為,則,

,

,

,得,所以.

從而.由圖可知,所求二面角的大小為銳角,

故所求的二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形是矩形,,將沿著對角線AC翻折,得到,設頂點在平面上的投影為O.

1)若點O恰好落在邊AD上,①求證:平面;②若,當BC取到最小值時,求k的值;

2)當時,若點O恰好落在的內部(不包括邊界),求二面角的余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若在區(qū)間上不是單調函數(shù),求實數(shù)的范圍;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍;

(3)當時,設,對任意給定的正實數(shù),曲線上是否存在兩點,,使得是以為坐標原點)為直角頂點的直角三角形,而且此三角形斜邊中點在軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,MDABCD,NBABCD.且MDNB1.則下列結論中:

MCAN

DB∥平面AMN

③平面CMN⊥平面AMN

④平面DCM∥平面ABN

所有假命題的個數(shù)是(  

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點Ax1,y1),Dx2,y2)其中(x1x2)是曲線y29xy≥0).上的兩點,A,D兩點在x軸上的射影分別為點BC|BC|3

(Ⅰ)當點B的坐標為(1,0)時,求直線AD的方程:

(Ⅱ)記AOD的面積為S1,梯形ABCD的面積為S2,求的范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形中,,中點,,,將沿對角線折起至,使平面平面,則四面體中,下列結論不正確的是( )

A. 平面

B. 異面直線所成的角為

C. 異面直線所成的角為

D. 直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, ,其中是自然常數(shù), .

(1)當時,求的極值,并證明恒成立;

(2)是否存在實數(shù),使的最小值為 ?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選出了三個科目作為選考科目.若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.某學校為了了解高一年級200名學生選考科目的意向,隨機選取20名學生進行了一次調查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學

生物

歷史

地理

政治

男生

選考方案確定的有5

5

5

2

1

2

0

選考方案待確定的有7

6

4

3

2

4

2

女生

選考方案確定的有6

3

5

2

3

3

2

選考方案待確定的有2

1

2

1

0

1

1

(1)在選考方案確定的男生中,同時選考物理、化學、生物的人數(shù)有多少?

(2)從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,ACBD=O,△PAC是邊長為2的等邊三角形,

1)求四棱錐P-ABCD的體積VP-ABCD;

2)在線段PB上是否存在一點M,使得CM∥平面BDF?如果存在,求的值,如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案