【題目】各項(xiàng)均為正數(shù)的數(shù)列{bn}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有2Sn=bn(bn+1).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)如果等比數(shù)列{an}共有2015項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列{an}的每相鄰兩項(xiàng)ak與ak+1之間插入k個(gè)(﹣1)kbk(k∈N*)后,得到一個(gè)新的數(shù)列{cn}.求數(shù)列{cn}中所有項(xiàng)的和;
(3)如果存在n∈N* , 使不等式 成立,求實(shí)數(shù)λ的范圍.

【答案】
(1)解:當(dāng)n=1時(shí),由2S1=b1(b1+1)得b1=1,

當(dāng)n≥2時(shí),由2Sn=bn(bn+1),2Sn1=bn1(bn1+1)得(bn+bn1)(bn﹣bn1)=bn+bn1

因數(shù)列{bn}的各項(xiàng)均為正數(shù),所以bn﹣bn1=1,

所以數(shù)列{bn}是首項(xiàng)與公差均為1的等差數(shù)列,

所以數(shù)列{bn}的通項(xiàng)公式為bn=n.


(2)解:數(shù)列{an}的通項(xiàng)公式為 ,

數(shù)列{cn}共有2015+1+2+…+2014=1008×2015項(xiàng),

其所有項(xiàng)的和為S1008×2015=(2+22+…+22015)+(﹣1+22﹣32+42﹣…20132+20142

=2(22015﹣1)+[3+7+…+4027]=22016﹣2+ ×1007

=22016+2015×1007﹣2=22016+2029103


(3)解:由 ,

,

因?yàn)? ,當(dāng) 取等號(hào),所以 取不到 ,

當(dāng)n=3時(shí), 的最小值為 (n∈N*)遞減,

的最大值為B1=6,

所以如果存在n∈N*,使不等式 成立

實(shí)數(shù)λ應(yīng)滿足A3≤λ≤B1,即實(shí)數(shù)λ的范圍應(yīng)為


【解析】
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓軸交于 兩點(diǎn),且

(1)求橢圓的方程;

(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線與直線分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

(1)若,極大值;

(2)若無零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若有兩個(gè)相異零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,為等邊三角形,且平面平面.的中點(diǎn),的中點(diǎn),過點(diǎn),的平面交.

(1)求證:平面;

(2)若時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店每天做若干個(gè)生日蛋糕,每個(gè)制作成本為50元,當(dāng)天以每個(gè)100元售出,若當(dāng)天白天售不出,則當(dāng)晚以30元/個(gè)價(jià)格作普通蛋糕低價(jià)售出,可以全部售完.

(1)若蛋糕店每天做20個(gè)生日蛋糕,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天生日蛋糕的需求量(單位:個(gè), )的函數(shù)關(guān)系;

(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個(gè))整理得下表:

(。┘僭O(shè)蛋糕店在這100天內(nèi)每天制作20個(gè)生日蛋糕,求這100天的日利潤(rùn)(單位:元)的平均數(shù);

(ⅱ)若蛋糕店一天制作20個(gè)生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當(dāng)天利潤(rùn)不少于900元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x,x∈R.

(1)當(dāng)m取何值時(shí),方程|f(x)-2|=m有一個(gè)解??jī)蓚(gè)解?

(2)若不等式[f(x)]2f(x)-m>0在R上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)對(duì)任意實(shí)數(shù),,,下列命題中正確的是( )

A.”是“”的充要條件

B.是無理數(shù)”是“是無理數(shù)”的充要條件

C.”是“”的充分條件

D.”是“”的必要條件

E.”是“”的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個(gè)焦點(diǎn),P(1, )是橢圓上一點(diǎn),且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過點(diǎn)F2 , 且與橢圓C交于A,B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得 =﹣ 恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案