【題目】各項(xiàng)均為正數(shù)的數(shù)列{bn}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有2Sn=bn(bn+1).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)如果等比數(shù)列{an}共有2015項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列{an}的每相鄰兩項(xiàng)ak與ak+1之間插入k個(gè)(﹣1)kbk(k∈N*)后,得到一個(gè)新的數(shù)列{cn}.求數(shù)列{cn}中所有項(xiàng)的和;
(3)如果存在n∈N* , 使不等式 成立,求實(shí)數(shù)λ的范圍.
【答案】
(1)解:當(dāng)n=1時(shí),由2S1=b1(b1+1)得b1=1,
當(dāng)n≥2時(shí),由2Sn=bn(bn+1),2Sn﹣1=bn﹣1(bn﹣1+1)得(bn+bn﹣1)(bn﹣bn﹣1)=bn+bn﹣1
因數(shù)列{bn}的各項(xiàng)均為正數(shù),所以bn﹣bn﹣1=1,
所以數(shù)列{bn}是首項(xiàng)與公差均為1的等差數(shù)列,
所以數(shù)列{bn}的通項(xiàng)公式為bn=n.
(2)解:數(shù)列{an}的通項(xiàng)公式為 ,
數(shù)列{cn}共有2015+1+2+…+2014=1008×2015項(xiàng),
其所有項(xiàng)的和為S1008×2015=(2+22+…+22015)+(﹣1+22﹣32+42﹣…20132+20142)
=2(22015﹣1)+[3+7+…+4027]=22016﹣2+ ×1007
=22016+2015×1007﹣2=22016+2029103
(3)解:由 ,
得 ,
記
因?yàn)? ,當(dāng) 取等號(hào),所以 取不到 ,
當(dāng)n=3時(shí), 的最小值為 (n∈N*)遞減,
的最大值為B1=6,
所以如果存在n∈N*,使不等式 成立
實(shí)數(shù)λ應(yīng)滿足A3≤λ≤B1,即實(shí)數(shù)λ的范圍應(yīng)為
【解析】
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓與軸交于 兩點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線與直線分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)若,極大值;
(2)若無零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若有兩個(gè)相異零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,為等邊三角形,且平面平面.為的中點(diǎn),為的中點(diǎn),過點(diǎn),,的平面交于.
(1)求證:平面;
(2)若時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天做若干個(gè)生日蛋糕,每個(gè)制作成本為50元,當(dāng)天以每個(gè)100元售出,若當(dāng)天白天售不出,則當(dāng)晚以30元/個(gè)價(jià)格作普通蛋糕低價(jià)售出,可以全部售完.
(1)若蛋糕店每天做20個(gè)生日蛋糕,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天生日蛋糕的需求量(單位:個(gè), )的函數(shù)關(guān)系;
(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個(gè))整理得下表:
(。┘僭O(shè)蛋糕店在這100天內(nèi)每天制作20個(gè)生日蛋糕,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
(ⅱ)若蛋糕店一天制作20個(gè)生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當(dāng)天利潤(rùn)不少于900元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x,x∈R.
(1)當(dāng)m取何值時(shí),方程|f(x)-2|=m有一個(gè)解??jī)蓚(gè)解?
(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)對(duì)任意實(shí)數(shù),,,下列命題中正確的是( )
A.“”是“”的充要條件
B.“是無理數(shù)”是“是無理數(shù)”的充要條件
C.“”是“”的充分條件
D.“”是“”的必要條件
E.“”是“”的必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2分別是橢圓C: (a>b>0)的兩個(gè)焦點(diǎn),P(1, )是橢圓上一點(diǎn),且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過點(diǎn)F2 , 且與橢圓C交于A,B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得 =﹣ 恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com