【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結(jié)論中不正確的是( )
A.y與x具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點(diǎn)的中心( ,
C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg

【答案】D
【解析】解:對于A,0.85>0,所以y與x具有正的線性相關(guān)關(guān)系,故正確;
對于B,回歸直線過樣本點(diǎn)的中心( , ),故正確;
對于C,∵回歸方程為 =0.85x﹣85.71,∴該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg,故正確;
對于D,x=170cm時(shí), =0.85×170﹣85.71=58.79,但這是預(yù)測值,不可斷定其體重為58.79kg,故不正確
故選D.
根據(jù)回歸方程為 =0.85x﹣85.71,0.85>0,可知A,B,C均正確,對于D回歸方程只能進(jìn)行預(yù)測,但不可斷定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足,且

(1)a , b的值;

(2),在區(qū)間上的最小值為,最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在極坐標(biāo)系和直角坐標(biāo)系中,極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,直線為參數(shù)),圓.

(Ⅰ)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)已知是直線上一點(diǎn),是圓上一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5道題中有3道理科題和2道文科題.如果不放回地依次抽取2 道題,求:

(l)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第 1 次抽到理科題的條件下,第2次抽到理科題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x[0,2]時(shí)有唯一解,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市出租車起步價(jià)為10元,最長可租乘3km(3km),以后每1km1.6元(不足1km,按1km計(jì)費(fèi)),若出租車行駛在不需等待的公路上,則出租車的費(fèi)用y()與行駛的里程xkm)之間的函數(shù)圖象大致為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在國內(nèi)汽車市場中,國產(chǎn)SUV出現(xiàn)了持續(xù)不退的銷售熱潮,2018年國產(chǎn)SUV銷量排行榜完整版已經(jīng)出爐,某品牌車型以驚人的銷量成績擊退了所有虎視眈眈的對手,再次霸氣登頂,下面是該品牌國產(chǎn)SUV分別在2017年與2018711月份的銷售量對比表

時(shí)間

7

8

9

10

11

2017年(單位:萬輛)

2.8

3.9

3.5

4.4

5.4

2018年(單位:萬輛)

3.8

3.9

4.5

4.9

5.4

(Ⅰ)若從7月至11月中任選兩個(gè)月份,求至少有一個(gè)月份這兩年該國產(chǎn)品牌SUV銷量相同的概率。

(Ⅱ)分別求這兩年7月至11月的銷售數(shù)據(jù)的平均數(shù),并直接判斷哪年的銷售量比較穩(wěn)定。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中“開立圓術(shù)”曰:置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑,“開立圓術(shù)”相當(dāng)于給出了已知球的體積V,求其直徑d的一個(gè)近似公式d≈ .人們還用過一些類似的近似公式.根據(jù)π=3.14159…..判斷,下列近似公式中最精確的一個(gè)是(
A.d≈
B.d≈
C.d≈
D.d≈

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.

(1)求f(x)的解析式;

(2)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對稱圖形,并求其對稱中心;

(3)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍成的三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊答案