對于函數(shù)f(x)=bx3+ax2-3x.
(1)若f(x)在x=1和x=3處取得極值,且f(x)的圖象上每一點的切線的斜率均不超過2sintcost-2cos2t+,試求實數(shù)t的取值范圍;
(2)若f(x)為實數(shù)集R上的單調(diào)函數(shù),且b≥-1,設(shè)點P的坐標為(a,b),試求出點P的軌跡所圍成的圖形的面積S.
(1)k+≤t≤k+,k∈Z(2)面積為S=(1-a2)da=4
(1)由f(x)=bx3+ax2-3x,
則f′(x)=3bx2+2ax-3,
∵f(x)在x=1和x=3處取得極值,
∴x=1和x=3是f′(x)=0的兩個根且b≠0.
.
∴f′(x)=-x2+4x-3.
∵f(x)的圖象上每一點的切線的斜率不超過
2sintcost-2cos2t+,
∴f′(x)≤2sintcost-2cos2t+對x∈R恒成立,
而f′(x)=-(x-2)2+1,其最大值為1.
故2sintcost-2cos2t+≥1
2sin(2t-)≥12k+≤2t-≤2k+,k∈Z
k+≤t≤k+,k∈Z.
(2)當(dāng)b=0時,由f(x)在R上單調(diào),知a=0.
當(dāng)b≠0時,由f(x)在R上單調(diào)
f′(x)≥0恒成立,或者f′(x)≤0恒成立.
∵f′(x)=3bx2+2ax-3,
∴Δ=4a2+36b≤0可得b≤-a2.
從而知滿足條件的點P(a,b)在直角坐標平面aOb上形成的軌跡所圍成的圖形是由曲線b=-a2與直線b=-1所圍成的封閉圖形,
其面積為S=(1-a2)da=4.
科目:高中數(shù)學(xué) 來源: 題型:
b-2x |
a+2x+1 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
b |
x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x-1 |
x+1 |
1 |
x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com