【題目】人口問(wèn)題是當(dāng)今世界各國(guó)普遍關(guān)注的問(wèn)題.認(rèn)識(shí)人口數(shù)量的變化規(guī)律,可以為有效控制人口增長(zhǎng)提供依據(jù).早在1798年,英國(guó)經(jīng)濟(jì)學(xué)家馬爾薩斯(T.R.Malthus,1766—1834)就提出了自然狀態(tài)下的人口增長(zhǎng)模型: ,其中x表示經(jīng)過(guò)的時(shí)間, 表示x=0時(shí)的人口,r表示人口的平均增長(zhǎng)率.

下表是1950―1959年我國(guó)人口數(shù)據(jù)資料:

如果以各年人口增長(zhǎng)率的平均值作為我國(guó)這一時(shí)期的人口增長(zhǎng)率,用馬爾薩斯人口增長(zhǎng)模型建立我國(guó)這一時(shí)期的具體人口增長(zhǎng)模型,某同學(xué)利用圖形計(jì)算器進(jìn)行了如下探究:

由此可得到我國(guó)1950―1959年我國(guó)這一時(shí)期的具體人口增長(zhǎng)模型為____________. (精確到0.001)

【答案】

【解析】由條件知是研究的1950年開(kāi)始的人口變化,故當(dāng)x=0時(shí),y=55196..r為平均人口增長(zhǎng)率,根據(jù)表格得到r=0.022.故得到 。

故答案為: 。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)
(1)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x﹣2=0垂直,求f(x)的單調(diào)區(qū)間(其中e為自然對(duì)數(shù)的底數(shù));
(2)若對(duì)任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (a<0). (Ⅰ)當(dāng)a=﹣3時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競(jìng)賽.經(jīng)過(guò)初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得10分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 , ,且各人回答正確與否相互之間沒(méi)有影響,用ξ表示乙隊(duì)的總得分. (Ⅰ)求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐PABCD中,PD⊥底面ABCD,底面ABCD為正方形,PDDC,FPB的中點(diǎn).求證:

(1)DFAP.

(2)在線段AD上是否存在點(diǎn)G,使GF⊥平面PBC?若存在,說(shuō)明G點(diǎn)的位置,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)yf(x)在定義域[1,1]上既是奇函數(shù),又是減函數(shù).

(1)求證:對(duì)任意x1x2[1,1],有[f(x1)f(x2)]·(x1x2)0

(2)f(1a)f(1a2)0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)調(diào)查某社區(qū)80個(gè)人,以研究這一社區(qū)居民的休閑方式是否與性別有關(guān),得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

運(yùn)動(dòng)

合計(jì)

男性

20

10

30

女性

45

5

50

合計(jì)

65

15

80


(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人是以運(yùn)動(dòng)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為休閑方式與性別有關(guān)系?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ),其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)g(x)=f( ﹣x)是(
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
D.偶函數(shù)且它的圖象關(guān)于點(diǎn)( ,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)滿足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并寫(xiě)出f(x)的定義域;
(Ⅱ)若f(x)在 上的值域?yàn)閇﹣1,0],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案