分析 把兩個(gè)根號(hào)里進(jìn)行變形,那么f(x)可看作為點(diǎn)C到點(diǎn)A和點(diǎn)B距離之和,利用對稱得到最小值即可.
解答 解:f(x)=$\sqrt{{x}^{2}-2x+2}$+$\sqrt{{x}^{2}-8x+25}$
=$\sqrt{(x-1)^{2}+(0-1)^{2}}$+$\sqrt{(x-4)^{2}+(0-3)^{2}}$
可看作點(diǎn)C(x,0)到點(diǎn)A(1,1)和B(4,3)的距離之和.
作A關(guān)于x軸的對稱點(diǎn)A'(1,-1),
可得f(x)min=|A'B|=$\sqrt{(1-4)^{2}+(-1-3)^{2}}$=5.
故答案為:5.
點(diǎn)評 考查學(xué)生會(huì)利用兩點(diǎn)間的距離公式求值,會(huì)利用對稱得到距離之和最。畬W(xué)生做題時(shí)注意數(shù)形結(jié)合解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x+$\frac{1}{4}$ | B. | f(x)=-2x+$\frac{1}{4}$ | C. | f(x)=-x+$\frac{1}{4}$ | D. | f(x)=-x+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P⊆Q | B. | Q⊆P | C. | P=Q | D. | P∪Q=R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6:5:4 | B. | 7:5:3 | C. | 3:5:7 | D. | 4:5:6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com