分析 點D(-1,6,2)到平面α的距離d=$\frac{|\overrightarrow{AD}•\overrightarrow{n}|}{|\overrightarrow{n}|}$,由此能求出結(jié)果.
解答 解:∵平面α的一個法向量為$\overrightarrow n=({1,-1,0})$,
點A(2,6,3)在平面α內(nèi),點D(-1,6,2),
∴$\overrightarrow{AD}$=(-3,0,-1),
∴點D(-1,6,2)到平面α的距離d=$\frac{|\overrightarrow{AD}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{3}{\sqrt{2}}=\frac{3\sqrt{2}}{2}$.
故答案為:$\frac{{3\sqrt{2}}}{2}$.
點評 本題考查點到平面的距離的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{20}{9}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰或直角三角形 | B. | 等邊三角形 | ||
C. | 直角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (0,2) | C. | ?$(2,2\sqrt{2})$ | D. | ($\sqrt{2}$,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com