精英家教網 > 高中數學 > 題目詳情

f(x)是R上周期為5的奇函數,且滿足f(1)=1,f(2)=2,則f(3)-f(4)=________.


-1

解析 ∵f(x+5)=f(x)且f(-x)=-f(x),

f(3)=f(3-5)=f(-2)=-f(2)=-2,f(4)=f(-1)=-f(1)=-1,故f(3)-f(4)=(-2)-(-1)=-1.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:


命題“若-1<x<1,則x2<1”的逆否命題是(  )

A.若x≥1或x≤-1,則x2≥1

B.若x2<1,則-1<x<1

C.若x2>1,則x>1或x<-1

D.若x2≥1,則x≥1或x≤-1

查看答案和解析>>

科目:高中數學 來源: 題型:


設函數f(x)=ln,求函數g(x)=ff的定義域.

查看答案和解析>>

科目:高中數學 來源: 題型:


已知函數f(x)=a·2xb·3x,其中常數ab滿足ab≠0.

(1)若ab>0,判斷函數f(x)的單調性;

(2)若ab<0,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:


函數f(x)的定義域為R,若f(x+1)與f(x-1)都是奇函數,則(  ).

A.f(x)是偶函數                B.f(x)是奇函數

C.f(x)=f(x+2)               D.f(x+3)是奇函數

查看答案和解析>>

科目:高中數學 來源: 題型:


已知函數f(x)=x2(x≠0,常數a∈R)

(1)討論函數f(x)的奇偶性,并說明理由;

(2)若函數f(x)在x∈[2,+∞)上為增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:


,則a,b,c的大小關系是(   )

A.a>c>b        B.a>b>c         C.c>a>b      D.b>c>a

查看答案和解析>>

科目:高中數學 來源: 題型:


設函數f(x)=,[x]表示不超過x的最大整數,則函數y=[f(x)]的值域是(  ).

A.{0,1}      B.{0,-1}       C.{-1,1}       D.{1,1}

查看答案和解析>>

科目:高中數學 來源: 題型:


討論方程|1-x|=kx的實數根的個數.

查看答案和解析>>

同步練習冊答案