17.已知命題p:?x0∈R,sinx0=$\sqrt{2}$;命題q:?x∈R,x2-x+1>0.則下列結(jié)論正確的是(  )
A.命題是p∨q假命題B.命題是p∧q真命題
C.命題是(?p)∨(?q)真命題D.命題是(?p)∧(?q)真命題

分析 首先判斷命題p和q的真假,再利用真值表對照各選項(xiàng)選擇.命題p的真假有正弦函數(shù)的有界性判斷,命題q的真假結(jié)合二次函數(shù)的圖象只需看△.

解答 解:命題p:因?yàn)?1≤sinx≤1,故不存在x∈R,使sinx=$\sqrt{2}$,命題p為假;
命題q:△=1-4=-3<0,故?x∈R,都有x2+x+1>0為真.
∴,命題是p∨q是真,命題“p∧q”是假命題,命題是(?p)∨(?q)真命題,命題是(?p)∧(?q)假命題.
故選:C

點(diǎn)評 本題考查命題和復(fù)合命題真假的判斷、正弦函數(shù)的有界性及二次函數(shù)恒成立等知識(shí),屬基本題型的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù) f (x)=(x+a)n,其中$n=6{∫}_{0}^{\frac{π}{2}}cosxdx,\frac{f′(0)}{f(0)}=-3$,則 f (x)的展開式中的x4系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c,其中c=2,且$\frac{cosA}{cosB}$=$\frac{a}$=$\frac{\sqrt{3}}{1}$.
(Ⅰ)求a,b,C.
(Ⅱ)如右圖,設(shè)圓O過A,B,C三點(diǎn),點(diǎn)P位于劣弧$\widehat{AC}$上,記∠PAB=θ,求△PAC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f(x)為定義在R上的奇函數(shù),且是周期為4的周期函數(shù),f(1)=1,則f(-1)+f(8)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,平面ABDE⊥平面ABC,AC⊥BC,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,AE=2BD=4,P、M分別為CE,AB的中點(diǎn).
(Ⅰ)證明:PD∥平面ABC;
(Ⅱ)是否在EM上存在一點(diǎn)N,使得PN⊥平面ABDE.若存在,請指出點(diǎn)N的位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖1,△ABC,AB=AC=4,$∠BAC=\frac{2π}{3}$,D為BC的中點(diǎn),DE⊥AC,沿DE將△CDE折起至△C′DE,如圖2,且C'在面ABDE上的投影恰好是E,連接C′B,M是C′B上的點(diǎn),且$C'M=\frac{1}{2}MB$.
(1)求證:AM∥面C′DE;
(2)求三棱錐C′-AMD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=x2-2ax+1在區(qū)間(2,3)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)公比為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=8,S2=48.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=4log2an(n∈N*),試求數(shù)列{bn}前n項(xiàng)和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè){an}為遞減的等比數(shù)列,其中q為公比,前n項(xiàng)和Sn,且{a1,a2,a3}⊆{-4,-3,-2,0,1,2,3,4},則$\frac{S_8}{{1-{q^4}}}$=$\frac{17}{2}$.

查看答案和解析>>

同步練習(xí)冊答案