(本小題滿分14分)
已知橢圓:上的一動點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到右準(zhǔn)線的距離等于短半軸的長.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 過點(diǎn)(,)的動直線交橢圓于、兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個定點(diǎn),使得無論如何轉(zhuǎn)動,以為直徑的圓恒過定點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
解: (Ⅰ)設(shè)橢圓的焦距為,則由題設(shè)可知,解此方程組得
,. 所以橢圓C的方程是. ………5分
(Ⅱ)解法一:假設(shè)存在點(diǎn)T(u, v). 若直線l的斜率存在,設(shè)其方程為,
將它代入橢圓方程,并整理,得
設(shè)點(diǎn)A、B的坐標(biāo)分別為,則 ……7分
因為及
所以
……10分
當(dāng)且僅當(dāng)恒成立時,以AB為直徑的圓恒過定點(diǎn)T,
所以解得
此時以AB為直徑的圓恒過定點(diǎn)T(0,1). ……12分
當(dāng)直線l的斜率不存在,l與y軸重合,以AB為直徑的圓為也過點(diǎn)T(0,1).
綜上可知,在坐標(biāo)平面上存在一個定點(diǎn)T(0,1),滿足條件. ……14分
解法二:若直線l與y軸重合,則以AB為直徑的圓是
若直線l垂直于y軸,則以AB為直徑的圓是
由解得.
由此可知所求點(diǎn)T如果存在,只能是(0,1). ……8分
事實(shí)上點(diǎn)T(0,1)就是所求的點(diǎn). 證明如下:
當(dāng)直線l的斜率不存在,即直線l與y軸重合時,以AB為直徑的圓為,
過點(diǎn)T(0,1);當(dāng)直線l的斜率存在,設(shè)直線方程為,代入橢圓方程,并整理,得
設(shè)點(diǎn)A、B的坐標(biāo)為,則 ……11分
因為,
所以,即以AB為直徑的圓恒過定點(diǎn)T(0,1). ……13分
綜上可知,在坐標(biāo)平面上存在一個定點(diǎn)T(0,1)滿足條件. ……14分w.w.w.k.s.5.u.c.o.m
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com