11、已知平面α,β,γ,直線l,m滿足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;     ②l⊥α;    ③β⊥γ;     ④α⊥β.
可由上述條件可推出的結(jié)論有
②④
(請將你認為正確的結(jié)論的序號都填上).
分析:由已知中平面α,β,γ,直線l,m滿足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么由面面垂直的性質(zhì)定理及面面垂直的判定定理,我們可以分別判定四個答案的真假,進而得到結(jié)論.
解答:解:若α⊥γ,γ∩α=m,γ∩β=l,l⊥m,
由于β⊥γ不一定成立,故①m⊥β、③β⊥γ錯誤;
根據(jù)面面垂直的性質(zhì)我們可得l⊥α,即②正確;
再由面面垂直的判定定理可得α⊥β,即④正確;
故答案為:②④.
點評:本題考查的知識點是平面與平面垂直的性質(zhì),平面與平面垂直的判定,其中熟練掌握空間直線與直線,直線與平面,平面與平面垂直的判定、性質(zhì)及相互轉(zhuǎn)化是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(sinx,cosx)
(1)若已知
a
b
,求tanx的值
(2)若已知f(x)=
a
b
,求f(x)的最大值及取得最大值的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面內(nèi)三點A(2,2),B(1,3),C(7,x)滿足
BA
AC
,則x的值為( 。
A、3B、6C、7D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上動點M到定點F(0,2)的距離比M到直線y=-4的距離小2,則動點M滿足的方程為
x2=8y
x2=8y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面坐標系中,點O為原點,A(-3,-4),B(5,-12)
(1)若
OC
=
OA
+
OB
,
OD
=
OA
-
OB
,求
OC
OD
的坐標;
(2)求
OA
OB
;
(3)若點P在直線AB上,且
OP
AB
,求
OP
的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宜賓二模)已知平面直角坐標系xoy上的區(qū)域D由不等式組
x+y≥2
x≤1
y≤2
給定,若M(x,y)為D上的動點,A的坐標為(-1,1),則
OA
OM
的取值范圍是
[0,2]
[0,2]

查看答案和解析>>

同步練習冊答案