15.sin22.5°•cos22.5°=$\frac{\sqrt{2}}{4}$.

分析 利用倍角公式及特殊角的三角函數(shù)值即可求值得解.

解答 解:sin22.5°•cos22.5°=$\frac{1}{2}$sin45°=$\frac{\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{2}}{4}$.

點(diǎn)評 本題主要考查了倍角公式及特殊角的三角函數(shù)值的應(yīng)用,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)$\frac{π}{4}$<α$<\frac{π}{2}$,角α的正弦線、余弦線和正切線的數(shù)量分別為a,b,c,由圖比較a,b,c的大小;如果$\frac{π}{2}$<α<$\frac{3π}{4}$,則a,b,c的大小關(guān)系又如何?(作圖并有比較的過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對于任意實(shí)數(shù)a,b,定義max{a,b}=$\left\{\begin{array}{l}{a}&{a≥b}\\&{a<b}\end{array}\right.$,已知在[-4,4]上的奇函數(shù)f(x)滿足:當(dāng)0<x≤4時,f(x)=max{2x-1,2-x},若方程f(x)-mx2+1=0恰有兩個根,則m的取值范圍是( 。
A.[-$\frac{7}{8}$,0)∪($\frac{{e}^{2}1{n}^{2}2}{4}$,1]B.[-$\frac{7}{8}$,0)∪($\frac{1}{e}$,1]
C.(-1,-$\frac{7}{8}$)∪($\frac{{e}^{2}1{n}^{2}2}{4}$,2]D.(-1,0)∪($\frac{1}{e}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.分段函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1\\;-2≤x≤0}\\{5x\\;0<x≤3}\end{array}\right.$,求
①函數(shù)的定義域,
②f(-1);
③f(1);
④f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.有編號為1,2,3,4,5的五個人,要住進(jìn)編號1,2,3,4,5的五個房間,要求每人一間,每間一人,且人與房間的編號不能相同,有多少種不同的住法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知直線的傾斜角α=30°,且直線過點(diǎn)M(2,1),則此直線的方程為$\sqrt{3}x-3y+3-2\sqrt{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.解:2cos50°cos70°-cos20°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,射線OA,OB與x軸的正方向分別成45°與30°的角,過點(diǎn)P(1,0)的直線與兩射線分別交于C,D,若線段CD的中點(diǎn)恰好在直線y=$\frac{1}{2}$x上,求CD所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={1,2,3,4},B={3,4,5},求A∩B,A∪B.

查看答案和解析>>

同步練習(xí)冊答案