已知函數(shù)f(x)=2cos2x―sin(2x―).
(Ⅰ)求函數(shù)的最大值,并寫出取最大值時(shí)x的取值集合;
(Ⅱ)已知△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=,b+c=2,求實(shí)數(shù)a的最小值。
(Ⅰ)所以函數(shù)的最大值為2,取最大值時(shí)的取值集合;(Ⅱ)實(shí)數(shù)的最小值為1.

試題分析:(Ⅰ)求函數(shù)的最大值,并寫出取最大值時(shí)的取值集合,首先將化為一個(gè)角的一個(gè)三角函數(shù),因此利用二倍角公式及輔助角公式,化簡函數(shù)得,即可求得函數(shù)的最大值為2,從而可得取最大值時(shí)的取值集合;(Ⅱ)由(Ⅰ)得,,故,可求得角的值為,在中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032517870469.png" style="vertical-align:middle;" />,可考慮利用余弦定理來解,由余弦定理得,,即可求得實(shí)數(shù)的最小值.
試題解析:(Ⅰ)f(x)=2cos2x-sin(2x-)=(1+cos2x)-(sin2xcos-cos2xsin)
=1+sin2x+cos2x=sin(2x+)+1                     (3分)
所以函數(shù)的最大值為2.                                (4分)
此時(shí)sin(2x+)=1,即2x+=2kπ+(kz)  解得x=kπ+(kz)
故x的取值集合為{x| x=kπ+,kz}                      (6分)
(Ⅱ)由題意f(A)=sin(2A+)+1=,化簡得sin(2A+)=
∵A(0,π),  2A+(,).  A=            (8分)
在三角形ABC中,根據(jù)余弦定理,
得a2=b2+c2-2bc·cos=(b+c)2-3bc                      (10分)
由b+c="2" 知bc()2="1," 即a2
當(dāng)b=c=1時(shí),實(shí)數(shù)a的最小值為1.                          (12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求證:
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,其中、為銳角,且
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(Ⅰ)求的最大值及取得最大值時(shí)x的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若,,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量,
(Ⅰ)當(dāng)時(shí),求函數(shù)的值域;
(Ⅱ)不等式,當(dāng)時(shí)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)在區(qū)間上的零點(diǎn);
(Ⅱ)設(shè),求函數(shù)的圖象的對稱軸方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知sin+sinα=-,-<α<0,則cosα=__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,若,則的形狀一定是(   )
A.等邊三角形B.不含60°的等腰三角形
C.鈍角三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則=(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案