【題目】已知數(shù)列 的各項(xiàng)均為正整數(shù),對(duì)于任意n∈N* , 都有 成立,且
(1)求 , 的值;
(2)猜想數(shù)列 的通項(xiàng)公式,并給出證明.

【答案】
(1)

解:因?yàn)?

當(dāng) 時(shí),由 ,即有 ,

解得 .因?yàn)? 為正整數(shù),故

當(dāng) 時(shí),由

解得 ,所以


(2)

解:由 , , ,猜想:

下面用數(shù)學(xué)歸納法證明.

①當(dāng) , 時(shí),由(1)知 均成立.

②假設(shè) 成立,則 ,

由條件得 ,

所以 ,

所以

因?yàn)? , ,

,所以

時(shí), 也成立.

由①,②知,對(duì)任意 ,


【解析】本題主要考查了數(shù)學(xué)歸納法證明不等式,解決問題的關(guān)鍵是根據(jù)(1)先列出 所滿足條件 ,化簡(jiǎn)得 ,再根據(jù)數(shù)列 的各項(xiàng)均為正整數(shù)這一限制條件求出 ,同理可得 (2)猜想: ,用數(shù)學(xué)歸納法證明的關(guān)鍵由k成立推出k+1成立,其推導(dǎo)思路同(1):由條件得 ,所以 ,所以 因?yàn)? , , ,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅲ)若,求證:不等式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)0<a<1,定義a1=1+a, , 求證:對(duì)任意n∈N , 有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)對(duì)都滿足,設(shè)函數(shù), ).

(Ⅰ)求的表達(dá)式;

(Ⅱ)若,使成立,求實(shí)數(shù)m的取值范圍;

(Ⅲ)設(shè), ,求證:對(duì)于

恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各不等式:
,
,
,


(1)由上述不等式,歸納出一個(gè)與正整數(shù) 有關(guān)的一般性結(jié)論;
(2)用數(shù)學(xué)歸納法證明你得到的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+m21x
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)a,使得函數(shù)f(x)的圖象關(guān)于點(diǎn)A(a,0)對(duì)稱,若存在,求實(shí)數(shù)a的值,若不存在,請(qǐng)說明理由.
注:點(diǎn)M(x1 , y1),N(x2 , y2)的中點(diǎn)坐標(biāo)為( , ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2+(b﹣8)x﹣a﹣ab的兩個(gè)零點(diǎn)分別是﹣3和2.
(Ⅰ)求f(x);
(Ⅱ)當(dāng)函數(shù)f(x)的定義域是[0,1]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班20名同學(xué)某次數(shù)學(xué)測(cè)試的成績(jī)可繪制成如圖莖葉圖.由于其中部分?jǐn)?shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計(jì)全班同學(xué)的平均成績(jī).

(1)完成頻率分布直方圖;

(2)根據(jù)(1)中的頻率分布直方圖估計(jì)全班同學(xué)的平均成績(jī)(同一組中的數(shù)據(jù)用改組區(qū)間的中點(diǎn)值作代表);

(3)根據(jù)莖葉圖計(jì)算出的全班的平均成績(jī)?yōu)?/span>,并假設(shè),且取得每一個(gè)可能值的機(jī)會(huì)相等,在(2)的條件下,求概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的一次數(shù)學(xué)競(jìng)賽中,全體參賽學(xué)生的競(jìng)賽成績(jī)X近似服從正態(tài)分布N(70,100).已知成績(jī)?cè)?/span>90分以上(含90分)的學(xué)生有16名.

(1)試問此次參賽的學(xué)生總數(shù)約為多少人?

(2)若該校計(jì)劃獎(jiǎng)勵(lì)競(jìng)賽成績(jī)?cè)?/span>80分以上(含80分)的學(xué)生,試問此次競(jìng)賽獲獎(jiǎng)勵(lì)的學(xué)生約為多少人?

附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997

查看答案和解析>>

同步練習(xí)冊(cè)答案