17.直線$y=-\frac{{\sqrt{3}}}{3}x+1$和x軸,y軸分別交于點A,B,以線段AB為一邊在第一象限內作等邊△ABC,則點C的坐標為$({\sqrt{3},2})$.

分析 由題意,A($\sqrt{3}$,0),B(0,1),則|AB|=2,AC⊥x軸,即可求出點C的坐標.

解答 解:由題意,A($\sqrt{3}$,0),B(0,1),則|AB|=2,AC⊥x軸,
∴點C的坐標為$({\sqrt{3},2})$.
故答案為$({\sqrt{3},2})$.

點評 本題考查直線方程,考查點的坐標的求法,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知f(x)為偶函數(shù),f(2+x)=f(2-x),當-2≤x≤0時,f(x)=2x,則f(2011)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求證:“若m>0,則方程x2+x-m=0有實根”為真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某生產(chǎn)旅游紀念品的工廠,擬在2017年度進行系列促銷活動.經(jīng)市場調查和測算,該紀念品的年銷售量x(單位:萬件)與年促銷費用t(單位:萬元)之間滿足3-x與t+1成反比例(若不搞促銷活動,紀念品的年銷售量只有1萬件);已知工廠2017年生產(chǎn)紀念品的固定投資為3萬元,每生產(chǎn)1萬件紀念品另外需要投資32萬元.當工廠把每件紀念品的售價定為“年平均每件生產(chǎn)成本的1.5倍”與“年平均每件所占促銷費的一半”之和時,則當年的產(chǎn)量和銷量相等.(利潤=收入-生產(chǎn)成本-促銷費用);
(1)請把該工廠2017年的年利潤y(單位:萬元)表示成促銷費t(單位:萬元)的函數(shù);
(2)試問:當2017的促銷費投入多少萬元時,該工廠的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列四個論斷①m∥n;②α∥β③m⊥α;④n⊥β.以其中三個論斷作為條件,余下一個論斷作為結論,則一共可以寫出真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,PA垂直于矩形ABCD所在平面,AE⊥PB,垂足為E,EF⊥PC垂足為F.
(Ⅰ)設平面AEF∩PD=G,求證:PC⊥AG;
(Ⅱ)設PA=$\sqrt{6},AB=\sqrt{3}$,M是線段PC的中點,求證:DM∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(1)求函數(shù)y=x(a-2x)(x>0,a為大于2x的常數(shù))的最大值;
(2)已知a>0,b>0,c>0,a2+b2+c2=4,求ab+bc+ac的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若$\overrightarrow a$=(λ,2),$\overrightarrow b$=(3,4),且$\overrightarrow a$與$\overrightarrow b$的夾角為銳角,則λ的取值范圍是$λ>-\frac{8}{3}且λ≠\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,圓O的半徑為定長r,A是圓O內的一定點,P為圓上任意 一點,線段AP的垂直平分線l和半徑OP相交于點Q,當點P在圓周上運動時,點Q的軌跡是(  )
A.直線B.C.橢圓D.雙曲線

查看答案和解析>>

同步練習冊答案