精英家教網 > 高中數學 > 題目詳情
精英家教網在平行四邊形ABCD中,O是AC與BD的交點,P、Q、M、N分別是線段OA、OB、OC、OD的中點,在APMC中任取一點記為E,在B、Q、N、D中任取一點記為F,設G為滿足向量
OG
=
OE
+
OF
的點,則在上述的點G組成的集合中的點,落在平行四邊形ABCD外(不含邊界)的概率為
 
分析:本題主要考查了古典概型的綜合運用,屬中檔題.關鍵是列舉出所有G點的個數,及落在平行四邊形ABCD不含邊界)的G點的個數,再將其代入古典概型計算公式進行求解.
解答:解:由題意知,G點的位置受到E、F點取法不同的限制,令(E,F)表示E、F的一種取法,則
(A,B),(A,Q),(A,N),(A,D)
(P,B),(P,Q),(P,N),(P,D)
(M,B),(M,Q),(M,N),(M,D)
(C,B),(C,Q),(C,N),(C,D)共有16種取法,
而只有(P,Q),(P,N),(M,Q),(M,N)落在平行四邊形內,故符合要求的G的只有4個,
落在平行四邊形ABCD外(不含邊界)的概率P=
16-4
16
=
3
4

故答案為:
3
4
點評:古典概型要求所有結果出現的可能性都相等,強調所有結果中每一結果出現的概率都相同.弄清一次試驗的意義以及每個基本事件的含義是解決問題的前提,正確把握各個事件的相互關系是解決問題的關鍵.解決問題的步驟是:計算滿足條件的基本事件個數,及基本事件的總個數,然后代入古典概型計算公式進行求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若
AC
=
a
,
BD
=
b
,則
AE
=
 
.(用
a
、
b
表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•天津模擬)在平行四邊形ABCD中,
AE
=
1
3
AB
,
AF
=
1
4
AD
,CE與BF相交于G點.若
AB
=
a
,
AD
=
b
,則
AG
=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平行四邊形ABCD中,邊AB所在直線方程為2x-y-3=0,點C(3,0).
(1)求直線CD的方程;
(2)求AB邊上的高CE所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平行四邊形ABCD中,點E為CD中點,
AB
=
a
,
AD
=
b
,則
BE
等于
-
1
2
a
+
b
-
1
2
a
+
b

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•房山區(qū)一模)在平行四邊形ABCD中,若
AB
=(1,3)
AC
=(2,5)
,則向量
AD
的坐標為
(1,2)
(1,2)

查看答案和解析>>

同步練習冊答案