已知sinα-sinβ=
6
3
,cosα-cosβ=
3
3
,則cos2
α-β
2
等于( 。
A、
3
4
B、
1
2
C、
1
16
D、
1
4
考點(diǎn):二倍角的余弦
專題:三角函數(shù)的求值
分析:將已知中的兩等式分別平方后相加,可求得cos(α-β)=
1
2
,利用二倍角的余弦即可求得cos2
α-β
2
的值.
解答: 解:∵(sinα-sinβ)2=
2
3
,(cosα-cosβ)2=
1
3

兩式相加得:2-2sinαsinβ-2cosαcosβ=1,
∴cos(α-β)=
1
2

∴cos2
α-β
2
=
1+cos(α-β)
2
=
3
4

故選:A.
點(diǎn)評(píng):本題考查三角函數(shù)間的平方關(guān)系式的應(yīng)用,逆用兩角差的余弦,突出考查二倍角的余弦,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過曲線y=
1
2
x3上的點(diǎn)(1,
1
2
)作曲線的切線m,則該切線m與圓O:x2+y2=1相交的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且an=2n+λ,若數(shù)列{Sn}為遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為(  )
A、[-3,+∞)
B、(-3,+∞)
C、(-4,+∞)
D、[-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在斜三棱柱ABC-A1B1C1中,A0,B0分別為側(cè)棱AA1,BB1上的點(diǎn),且知BB0=A0A1,過A0,B0,C1的截面將三棱柱分成上下兩個(gè)部分體積之比為( 。
A、2:1B、4:3
C、3:2D、1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)的圖象上任一點(diǎn)(x0,y0)處切線的方程為:y-y0=(x0-2)( x0-1)(x-x0),那么函數(shù)f(x)的單調(diào)減區(qū)間是( 。
A、(1,2)
B、(-∞,1]
C、[2,+∞)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于二項(xiàng)式(x-1)23有下列命題:
①該二項(xiàng)展開式中非常數(shù)項(xiàng)的系數(shù)和是1;
②該二項(xiàng)展開式中第六項(xiàng)為
C
6
23
x6
③該二項(xiàng)展開式中系數(shù)最大的項(xiàng)是第13項(xiàng);
④當(dāng)x=24時(shí),(x-1)23除以24的余數(shù)是23.
其中正確命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)E在線段BB1和線段A1B1上移動(dòng),∠EAB=θ,θ∈(0,
π
2
),過直線AE,AD的平面ADFE將正方體分成兩部分,記棱BC所在部分的體積為V(θ),則函數(shù)V=V(θ),θ∈(0,
π
2
)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinωx(ω>0)的圖象在y軸右邊的第一條對(duì)稱軸的方程x=1,則ω=(  )
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱椎P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上的一點(diǎn),它的正視圖和側(cè)視圖如圖所示,則下列命題正確的是( 。
A、AD⊥平面PBC且三棱椎D-ABC的體積為
8
3
B、BD⊥平面PAC且三棱椎D-ABC的體積為
8
3
C、AD⊥平面PBC且三棱椎D-ABC的體積為
16
3
D、BD⊥平面PAC且三棱椎D-ABC的體積為
16
3

查看答案和解析>>

同步練習(xí)冊(cè)答案