分析 (1)根據(jù)題意得出最大角為A,由余弦定理求出a的值,再求b、c的值;
(2)由題意求出角C的值,再根據(jù)根與系數(shù)的關系和余弦定理,即可求出三角形的面積.
解答 解:(1)△ABC中,a-b=4,a+c=2b,且最大角為120°,
∴b=a-4,c=a-8,A=120°;
由余弦定理得:
cosA=$\frac{^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{{(a-4)}^{2}{+(a-8)}^{2}{-a}^{2}}{2(a-4)(a-8)}$=-$\frac{1}{2}$,
解得:a=4(不合題意,舍去)或a=14,
∴b=14-4=10,c=14-8=6;
(2)由2sin(A+B)-$\sqrt{3}$=0,
得sin(A+B)=$\frac{\sqrt{3}}{2}$,
∵△ABC為銳角三角形,
∴A+B=120°,C=60°,
又∵a、b是方程x2-2$\sqrt{3}$x+2=0的兩根,
∴a+b=2$\sqrt{3}$,
又a•b=2,
∴c2=a2+b2-2a•bcosC=(a+b)2-3ab=12-6=6,
∴c=$\sqrt{6}$,
S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×2×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.
點評 本題考查了余弦定理的應用問題,也考查了解三角形和根與系數(shù)的關系,是綜合性題目.
科目:高中數(shù)學 來源: 題型:解答題
色盲 | 不色盲 | 合計 | |
男 | 38 | 442 | 480 |
女 | 6 | 514 | 520 |
合計 | 44 | 956 | 1000 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 480種 | B. | 720種 | C. | 504種 | D. | 600種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2)∪(2,+∞) | B. | (1,+∞) | C. | (1,2)∪(2,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com