為正整數(shù),若,且對滿足條件的任意a,b,c都有

時,的最大值為                     ;若

,且對滿足條件的任意都有

,設(shè)的最大值為,記

,則               

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)

其中λ為實數(shù),n為正整數(shù).
(1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)證明:當(dāng)λ≠18時,數(shù)列 {bn} 是等比數(shù)列;
(3)設(shè)Sn為數(shù)列 {bn} 的前n項和,是否存在實數(shù)λ,使得對任意正整數(shù)n,都有Sn>-12?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9、設(shè)a,b,m為正整數(shù),若a和b除以m的余數(shù)相同,則稱a和b對m同余.記作a≡b(bmodm),已知a=C2010132+C2010234+…+C2010201034020,b≡a(mod10),則b的值可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,m為正整數(shù),若a和b除以m的余數(shù)相同,則稱a和b對m同余. 記作a=b(modm),已知a=
C
1
2009
32
+
C
2
2009
34
+…+
C
2009
2009
34018
,b=a(mod10),則b的值可以是( 。

查看答案和解析>>

同步練習(xí)冊答案