設f(x)=2|x|-|x+3|,若關于x的不等式f(x)+|2t-3|≤0有解,則參數(shù)t的取值范圍為   
【答案】分析:由題意可得|2t-3|≤-f(x),可得-f(x)的最大值是3,故只要|2t-3|≤3即可,解之可得.
解答:解:f(x)+|2t-3|≤0有解,則|2t-3|≤-f(x),
而-f(x)=|x+3|-2|x|=
可得-f(x)的最大值是3,故只要|2t-3|≤3即可,
解得:0≤t≤3,故t的取值范圍為:[0,3]
故答案為:[0,3]
點評:本題考查絕對值不等式的解法,涉及絕對值函數(shù)的最值和絕對值不等式的解集,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)在x0處可導,下列式子中與f′(x0)相等的是(  )
(1)
lim
△x→0
f(x0)-f(x0-2△x)
2△x
;(2)
lim
△x→0
f(x0+△x)-f(x0-△x)
△x

(3)
lim
△x→0
f(x0+2△x)-f(x0+△x)
△x
(4)
lim
△x→0
f(x0+△x)-f(x0-2△x)
△x
A、(1)(2)
B、(1)(3)
C、(2)(3)
D、(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)當a=1時,求f(x)的解析式;
(2)在(1)的條件下,若方程f(x)-m=0有4個不等的實根,求實數(shù)m的范圍;
(3)當2≤a<9時,設f(x)=f2(x)所對應的自變量取值區(qū)間的長度為l(閉區(qū)間[m,n]的長度定義為n-m),試求l的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=
2-x,x≤2
log81x,x>2
,則滿足f(x)=
1
4
的x的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案